
206808

SENSITIVITY ANALYSIS AND OPTIMIZATION OF ENCLOSURE RADIATION

WITH APPLICATIONS TO CRYSTAL GROWTH

BY

MICHAEL M. TILLER

B. M. Eng., University of Minnesota, 1991

M. S., University of Illinois, 1993

i

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Mechanical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1995

Urbana, Illinois



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

AUGUST 1995

WE HEREBY RECOMMEND THAT THE THESIS BY

MICHAEL M. TILLER

ENTITLED SENSITIVITY ANALYSIS AND OPTIMIZATION OF

ENCLOSURE RADIATION WITH APPLICATIONS TO CRYSTAL GROWTH

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

_v _d _ Head-°f-_fl/artment

C
/,'/)2/ ,g -_.--'_-_v'-_,_ Ch_irp_.

C<_ .a" ".,',a,-g'7---=¢:_:

J"Required for doctor's degree but not for master's.

O-517



QCopyright by Michael M. Tiller, 1995



Abstract

In engineering, simulation software is often used as a convenient means for carrying out

experiments to evaluate physical systems. The benefit of using simulations as "numerical"

experiments is that the experimental conditions can be easily modified and repeated at

much lower cost than the comparable physical experiment. The goal of these experiments

is to "improve" the process or result of the experiment. In most cases, the computational

experiments employ the same trial and error approach as their physical counterparts. When

using this approach for complex systems, the cause and effect relationship of the system may

never be fully understood and efficient strategies for improvement never utilized. However, it

is possible when running simulations to accurately and efficiently determine the sensitivity of

the system results with respect to simulation parameters (e.g., initial conditions, boundary

conditions, and material properties) by manipulating the underlying computations. This

results in a better understanding of the system dynamics and gives us efficient means to

improve processing conditions.

We begin by discussing the steps involved in performing simulations. Then we consider

how sensitivity information about simulation results can be obtained and ways this infor-

mation may be used to improve the process or result of the experiment. Next, we discuss

optimization and the efficient algorithms which use sensitivity information. We draw on all

this information to propose a generalized approach for integrating simulation and optimiza-

tion, with an emphasis on software programming issues.

After discussing our approach to simulation and optimization we consider an applica-

tion involving crystal growth. This application is interesting because it includes radiative

heat transfer. We discuss the computation of radiative view factors and the impact this

mode of heat transfer has on our approach. Finally, we will demonstrate the results of our

optimization.
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Chapter 1

Simulation

1.1 Overview

In engineering, simulation software is used as a convenient means of investigating processes

and judging product performance. The benefit of using simulations is that experimental

conditions can be easily modified and repeated at relatively low cost. In general, the goal

of these numerical experiments is to in some way "improve" the process or result of the

experiment. In most cases, the computational experiments employ the same trial-and-error

approach used in physical experiments. The only way to understand the cause and effect

relationships in the system is by observing them and examining trends in results. Using

this approach results in important aspects of the system never being fully understood, and

efficient strategies for improvement never being utilized.

In this chapter, we first discuss where the simulations system of equations come from.

Then, we present a general form for nonlinear systems of equations and discuss how they



are solved. Finally, we derive some of the important terms used to solve these systems for

both steady-state and transient simulations.

1.2 Systems of Nonlinear Equations

Simulations are discretized computer representations of physical systems. One method of

forming a discrete representation is the finite element method (FEM) which divides the

domain into small pieces called elements. In FEM formulations, the continuous governing

equations, which usually apply at every point in the physical domain, are only enforced in

an "average" sense over the elements. The degrees of freedom are represented at the vertices

of the elements and interpolated over the element using basis functions. The equation for

each degree of freedom is written in terms of "neighboring" degrees of freedom. The result

is a system of equations with very few non-zero terms, such a system is termed sparse.

If the underlying phenomena of the physical system are nonlinear, the systems of equa-

tions that arise from discretization will also be nonlinear. We assume that such a system

can be written in the following general form:

R(u(b), v(b), b) = 0 (1.1)

where R is called the residual vector, u is the solution to the nonlinear system of equations,

b is a vector of design variables or simulation parameters, and v represents other quantities

which are functions of b.



1.3 Solution Algorithms

1.3.1 Newton-Raphson

If the tangent matrix _R_d- can be calculated accurately and is non-singular, then the Newton-

Raphson method is a very effective method for solving the residual equations for u. Each

iteration of the Newton-Raphson method solves:

-_-R-(u,(b), v(b), b)A u, = - R(u,(b), v(b), b) (1.2)

Note that Equation (1.2) is a linearization of the residual function around the point ui. This

linearization results in a linear system of equations which are used to solve for the increment

Aui. The quantity Aui is used to determine ui+l by using the updating relation:

ui+l =ui+Aui (1.3)

1.3.2 Linear Systems of Equations

There are two classes of methods for solving linear systems like the one in Equation (1.2),

they are direct methods and iterative (or indirect) methods. A good example of a direct

methods is LU decomposition which works by factoring the tangent matrix into lower (L) and

upper (U) triangular matrices, and then solving the system by back-substitution. Indirect

methods, like Krylov subspace methods, work by multiplying vectors by the tangent matrix

(and sometimes its transpose).
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There are many interesting contrasts between these two methods. First, iterative methods

• terminate when the answer is deemed "good enough", while direct methods will provide only

their "best" answer. Another important difference is that direct methods require the portions

of the matrix to be stored in memory and decomposition can result in additional non-zero

terms being created, while iterative methods only require matrix-vector products which can

be done without even forming the matrix.

Given the general form for a set of simultaneous linear equations:

Ax=b (1.4)

it is worth noting that the Krylov subspace methods require only the matrix-vector products

Az and zTA for arbitrary vectors z. Such matrix vector products can be quickly evaluated for

sparse matrices. The computational cost of a matrix-vector product is primarily a function

of the sparseness of the matrix, and not of its structure. On the other hand, the efficiency

of factorization methods such as LU decomposition are directly related to matrix structure.

The reason for this is that the envelope of the L and U matrices will be the same as the

envelope for the matrix to be factored. The closer the non-zero elements are to the diagonal,

the smaller the envelope of A and the fewer operations which must be performed in the

factorization (see Watkins [1]).

The convergence rate of Krylov subspace methods is related to the condition number of

the matrix A. For the conjugate gradient algorithm, operating on a symmetric positivie

definite system, the number of iterations required to converge to a given tolerance is pro-

portional to the square root of the condition number. For many algorithms quantitative

4



expressions for convergence are not available. As a general rule, the smaller the condition

number of a matrix, the faster Krylov methods will converge (see Golub and Van Loan [2]

for details).

In many cases it is possible to construct an approximation of A, called _t, with a structure

such that it is straightforward and efficient to calculate _-1. We then apply the Krylov

subspace method to the modified system of equations:

[.&-IA]x = _-x b (1.5)

Any vector x which solves Equation (1.5) is a solution to Equation (1.4). The difference is

that the condition number of the matrix [A-1A] should be significantly reduced, depending

on how well _. approximates A.

Using .& to enhance the convergence of Krylov subspace methods is called preconditioning

(see Sarret, et al. [3] or Golub and Van Loan [2]). One simple way to construct _, is to make

it a diagonal matrix, comprising the diagonal elements of A. This approach makes inversion

of A trivial. Another approach is to extract the diagonal and N bands above and below

the diagonal from A and place them in .&. In this case, LU decomposition can be used to

decompose A. Yet another approach is to perform LU decomposition on A but not allow

any fill (zero elements becoming non-zero elements). This is called partial or incomplete LI_

factorization. The implementation of preconditioned methods is such that it is not actually

necessary to form _-I but rather to compute A-lz and zTa_k -1 for any arbitrary z. The

best preconditioning method depends on the properties of A itself.

5



1.4 Steady State Simulations

In steady state problems, the governing equations are of the form:

K(u(b), v(b), b)u(b) = f(u(b), v(b), b) (1.6)

where K is (historically) called the secant stiffness matrix and f is the force vector. To solve

the system we must find the u which satisfies Equation (1.1), with R defined as:

R(u(b),v(b),b) = K(u(b),v(b),b)u(b)- f(u(b),v(b),b) (1.7)

Recall that the Newton-Raphson algorithm in Section 1.3 required knowledge of the tangent

matrix, aR For this system of equations, the tangent matrix would be:_-fi-.

OR; _ OKij Ofi (1.8)
Ouk Ouk us + Kik - Ou----k

The use of indicial notation in some expressions is necessary to clarify exactly what operations

are to be performed.

1.5 Transient Simulations

Next, we consider a continuous first-order system of differential equations,

C(u, b)fl + K(u, b)u = f(u, b) (1.9)
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We solvethe system by integrating the differential equation over discrete quantities of time

called time steps. To discretize the system, we use the following relation:

Un+ 1 __ U'n

Ou ,*÷_ + (1 - O)u '_ - At,, (1.10)

where the superscripts indicate which time step the vectors are associated with. Dropping

the explicit dependencies and using Equation (1.10) to integrate Equation (1.9) we get the

algebraic system of equations:

[C n+' + 0At,K_+'] u "+1 =[C"-(1-O)At,Kn]u"+Atn[Of,*+l + (1 - 0)f,*] (1.11)

where u'* is the solution at the current time step, u n+l is the solution at the next time step

and At,, is the time step. The residual function for a transient system can then be written

as:

a(un+l,un, b) : Iv TM +0AtnKn+l]u,*+l-[Cn--(1--0)Atngn]un--

At,, [Of ,*+' + (1 -- e)f"] (1.12)

Note that for a transient system, the quantity v in Equation (1.2) is represented by the

solution u _.



Differentiating the transient systemshowin Equation (1.12)by u"+1 weget the following

definitions for the tangent matrix:

[ OC?j+' 0K?j+1
+ eat. 0u_+, =_+,+

[v,_+1+ 0atog_+'] - at O°z+'
- 0u_+l

(1.13)

1.6 Parallelization

Given a system whose tangent matrix is sparse (e.g., finite element analysis), there are

some interesting opportunities for exploiting the inherent parallelism by performing domain

decomposition. Details about efficiency and implementation can be found in Sharma, et

hi. [4]. Much of the speed-up achieved by domain decomposition is the result of the algorithms

used for solving the linearized system (see Section 1.3). For now, we discuss how such

problems are posed in terms of quantities that we have already discussed.

For simplicity we consider a system decomposed into just two separate domains, although

the same analysis can be used for an arbitrary number of decomposed domains. In addition,

we only consider the solution and design vectors. The solutions for the two domains are

called ul and u2. Now let us assume that we have a residual function for each domain,

and we refer to them as R1(u_(b),u2(b),b) and R2(ul(b),u2(b),b). Our goal is to find

the zeroes (roots) for both residual functions. To this end, we construct a global residual

8



function R(ul(b), u2(b),b) and solution vector asfollows:

R(u,(b),u2(b),b) =
R,(ul(b), u2(b), b), b)

R2(ul(b), u2(b), b)

(1.14)

u,(b)
U(Ul (b), u2(b), b ) = (1.15)

u2(b)

Next, we use the Newton-Raphson method described in section 1.3 to find the roots of the

global residual. Recall that for each Newton-Raphson iteration we solve the system:

-_(ui(b), b)Aui = -R(ui(b), b) (1.16)

which in the case of our decomposed domain becomes:

°R' (u,,(b), u2,(b), b)
aul

_uR, (Ul, (b), u2, (b), b)
AUll

Au_,

Specifically note that the tangent matrix has become:

{-Rl(Ul,(b),u2,(b),b) }
-R2(u,, (b), u2, (b), b)

(1.17)

_uR(Ui(b), b) = (1.18)



andrecall that the Krylov subspacemethod requiresthe matrix-vector product:

0___Rz 0R, z }

= 0u, 1 _ 0u_ 2

ol_ z o___Rz
aul 1 -)- 8u2 2

(1.19)

which can be done in parallel, each processor using a different segment of the tangent matrix

to operate on.

In addition to speeding up solution times by parallelizing computations, domain decom-

position has applications in what is commonly called concurrent engineering. Examples of

systems for concurrent engineering can be found in Choi [5] and Tortorelli [6]. It is sometimes

necessary to solve different aspects of the same problem using different simulation packages.

For example it might be necessary, in a single application, to solve for temperatures using one

simulation package (e.g., FIDAP), and perform stress analysis with another (e.g., ANSYS).

Unfortunately, in cases where coupling between the two results exist (i.e., the temperature

solution depends on the stress solution and the stress solution depends on the temperature

solution) it may be impossible to express this coupling in either package (i.e., it may not be

possible to compute _ for i _ j).
Ou i

Michaleris, et al. [7] describe how to compute sensitivities with multiple simulation pack-

ages by alternating between the systems, simultaneously converging on solutions for both.

While it is possible to obtain a converged solution for these cases, it requires access to a

complete tangent matrix, although not necessarily in core all at once. So, drawing from our

example above, the terms _ and _ shown in Equation (1.18) must be supplied outside0u_ 0ul

10



the simulation packages.For this reasonit is generallyeasier to have thesecomputations

donefrom within the samesimulation packageif possible.

In the next chapter,we useour knowledgeof how systemsof equationsare formed and

solvedto demonstrate how sensitivity information can be derived for simulation results.

We will find that the terms usedby the Newton-Raphsonalgorithm will be very useful in

computingsensitivity information.

11



Chapter 2

Sensitivity Analysis

2.1 Overview

Accurate and efficient methods will be demonstrated for determining the sensitivity of the

system response to changes in the simulation parameters (e.g., initial conditions, bound-

ary conditions, material properties) by manipulating the underlying computations. In this

chapter, we will discuss how such sensitivity information can be obtained, and in the next

chapter we discuss how this sensitivity data can be used to improve the process or result of

a simulation.

We consider a program which performs simulations (the simulator) as a device which

transforms "input data", such as nodal coordinates, boundary conditions, and material prop-

erties, into some kind of result, such as nodal temperatures and nodal velocities. Likewise,

a simulator which performs sensitivity calculations transforms sensitivity information about

12



input data into sensitivity information about the result. In this chapter we will discuss in

detail how such sensitivity information can be computed.

Efficient calculation of sensitivity information requires an accurate tangent matrix, art
On"

Sensitivity analysis has been applied for some time in structural engineering applications

(see Venkayya [8], Hang et aL [91 or Austin et aL [10]). For structural systems with linear

response, computing sensitivities is straightforward because the already computed stiffness

matrix will be equal to the tangent matrix. However for nonlinear problems, computing

sensitivities is made more complicated because the tangent matrix is different than the

oR
stiffness matrix. Fortunately, since Newton-Raphson is a common solver which requires 5-if,

the tangent matrix is often available. However, for complicated phenomena such as radiation

and solidification, some terms are sometimes neglected from the tangent matrix, which will

lead to erroneous sensitivities. When the tangent matrix is not formed correctly, other

less efficient algorithms, such as finite different approximations can be used. An excellent

overview, for both linear and nonlinear systems, can be found in Haftka and G/irdal [11].

Unfortunately, even if the source code is available, most existing simulator's data struc-

tures make no provision for sensitivity information, and experience has shown that con-

siderable specialized changes are necessary to adapt these simulators to process sensitivity

information for nonlinear problems. Even if one makes this effort, it is still very cumbersome

to inform the simulator of sensitivity information about the input data, because conventional

simulators lack a sensitivity "vocabulary" in their user interfaces. To illustrate this point,

consider the geometric definition of the model. The only geometric data normally required

by a FEA simulator consists of nodal coordinates and element connectivity. However, it is

13



more natural for a designer to want sensitivity information with respect to some aggregation

of nodal data, such as a dimension of the computational domain. This calculation requires

knowledge of the sensitivity of each node's coordinates with respect to that dimension. How

do we obtain this sensitivity, and how should it be communicated to the simulator? Sim-

ilar observations may be made about any other simulation parameter. This is not to say

that the task is impossible, rather that it must be done differently for every simulator. For

this reason, we have developed a simulator designed for both efficient solution and efficient

sensitivity analysis.

2.2 Integrated Sensitivity Analysis

The application of optimization has been slower for nonlinear problems, such as solidification,

radiative heat transfer and fluid flow, because efficient schemes to compute sensitivities are

difficult to implement. Many of the techniques described by Tortorelli [12] are of value

for these problems, because they provide a formal way to determine the sensitivity of the

simulated response with respect to simulation parameters for almost any problem where the

system response is determined by use of computer simulation. Below we discuss the specifics

of these techniques, how they have been applied to specific engineering problems, and later

show how the techniques can be formalized to construct a framework for simulation and

sensitivity analysis.

To implement these methods effectively, the entire approach to communication with the

simulator must be revised. Efficient calculation of sensitivity information requires that, for

each computation in the simulation package, an analogous computation involving sensitivity

14



information must also be available. Modifying existing simulation codes thus requires adding

these analogous computations, as well as the logic to utilize them. The approach we have

taken here has been to formalize the computations involved in the simulation and to express

them in terms of abstract C++ class specifications. Thus, we build into the code the ability

to accept and manipulate sensitivity information.

As we shall see in the next chapter, much of the sensitivity analysis we perform is moti-

vated by optimization problems. In these problems we define a function G(u(b), b) where u

represents the vector of simulation results and b represents the vector of simulation param-

eters which are design variables. We seek to minimize the function G, called our objective

function, with respect to b. The most efficient optimization schemes require accurate calcu-

aa the faster the optimization will converge.dG The more accurate the value for _-6lation of _--6"

One way to express the gradient of G is by using the chain rule as follows:

dG OG OG du

db- 0b + 0-_-_ (2.1)

2.3 Direct Differentiation Method

In this section we discuss how sensitivity information influences the relationship between

optimization and simulation. Specifically, we demonstrate how to compute the sensitivity of

Simulation results with respect to simulation parameters, also known as the response sensi-

tivity du Response sensitivities represent the "cause and effect" relationship between the

simulation result and simulation parameter variations. We begin by differentiating Equation

15



(1.1) with respect to b, giving us:

dR OR du OR dv OR

db - 0u db + 0v db + 0b 0 (2.2)

where we use the fact that Equation (1.1) holds for all b. Rearranging terms and considering

a single design variable bk yields:

db---_= - _ -_ + _ _ ] (2.3)

Note that oR represents the tangent of the residual function with respect to a quantity

whose value is known a priori, and for this reason it appears on the right hand side of

Equation (2.3).

2.3.1 Steady State Simulations

Taking the governing equations in Equation (1.6) and differentiating with respect to bk gives:

dK du df
u+ - (2.4)

dbk K dbk dbk

Expanding the equation further and including partial derivatives,

OK du )+ Ou
du Of Of du

u + K dbk - Obk + O----udb--_ (2.5)

16



and then regrouping terms gives:

OK,,,, oy,'_du, Of, OK,,Kil + _ J Out ] dbk Obk Obk ut (2.6)

Notice we obtain the same result by using Equation (2.3) with v = 0,

du [0R]-I 0R (2.7)dbk - _ 0bk

where

OK_j Of_ORi Kij6jk + u (2.8)

OP_ OKij Ofi

Obk Obk u3 Obk (2.9)

For this reason, we can avoid the steps shown in Equations (2.4)-(2.6) by using the definition

of the residual system directly.

As pointed out previously, for linear problems we find the simplified result,

OK

_= (2.1o)

Since the system response is solved as:

u = K-if (2.11)

17



the sensitivitiesof a linear systemmay be found by applying a "pseudo-load", abk0f abk0KUso

that:

d__._U_U=K__{Of OK }dbk Obk _7 u (2.12)

2.3.2 Transient Simulations

Using the definition of the residual function given in Equation (1.12) and the definition of

the tangent matrix found in Equation (1.13), to apply Equation (2.3) we need to compute

OR and OR
Ou,, b-_k"

Differentiating Equation (1.12) with respect to u" gives:

OK_+_,
+ OAt, Ou'_ u'] +1 -- [C_ - (1 - O)At,,K_]

K_] [oOf[ '+1 ,,,Of['](1 - O)At,, u_ - At,, [ Ou'_ + (1 -
(2.13)

Likewise, differentiating instead by bk gives us:

OR [oco+, oK-+,] [oco OK°I
Obk - t Obk +OAt. _ j.°+_ (1-t Ob_ O)at°-_[J

r of-]-at. [o--_ + (1- o)_

U n

(2.14)

2.4 Adjoint Method

The adjoint method (see Haftka and Giirdal [11] or Haug et al. [9]) is an alternative to the

direct differentiation method. To calculate sensitivities using this technique, a new objective

18



function is formed by augmenting the original objective function as follows:

= G + arR (2.15)

where ,_ is a vector, as yet unknown which is independent of r and b. Assuming that a

valid solution u has already been calculated such that R(u(b), v(b), b) = 0, then there is

no difference between G and G given any arbitrary value for ,_. The importance of defining

is seen when we differentiate with respect to a design variable, which gives:

dG dG OG OG du )_T ( OR 0Rdu)dbj - dbj - Obj + O----udb"--j+ _ + O'--ud---_j (2.16)

and then rearrange terms to find:

dG OG ,_TOR (OG ORTA) dudbj - + ] (2.17)

It is now convenient to choose _ to make the final term on the right hand side of Equation

(2.17) vanish, i.e.,

OG OR T

0---u+ _u ,k = 0 (2.18)

After solving this equation for ,_, the sensitivity of the objective function is obtained as:

dG _ OG + ,_TOR
dbj Obj Ob_

(2.19)
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Note that we do not require aua--g, thus we may avoid solving the series of equations defined

by Equation (2.3)

For steady state problems, the main preference for the direct differentiation or adjoint

method depends on the ratio of the number of design variables to the number of con-

straints. The direct differentiation method requires us to solve Equation (2.3) for every

design variable, whereas the adjoint method requires us to solve Equation (2.18) for every

constraint/objective function. For this reason the adjoint method is preferred in situations

where there are more design variables then constraint/objective functions. For transient

problems, the direct differentiation method is more straightforward to implement and is

often prefered over the adjoint method for this reason (see Haftka and G/irdal [11]). For

brevity, we do not consider the formulation of the adjoint method for tra_nsient problems.

2.5 Solving Linear Sensitivity Equations

Note that Equation (2.3) must be solved for the right hand side associated with each design

variable, using the same matrix. The need to solve for multiple right hand sides has some

influence over the algorithm used. From Section 1.3.2, two common methods for solving linear

systems of equations are LU decomposition and the Krylov subspace family of methods. If

LU decomposition is used during each Newton-Raphson iteration, the already decomposed

matrix can be used to solve the different right hand sides of Equation (2.3). Since the matrix

is already decomposed, each additional right hand side requires only a back-substitution

operation (see Watkins [1] for detail). When using the adjoint method, using incomplete
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LU decompositionasa preconditionerfor the Krylov methodsgavethe best results for our

exampleproblem (seeChapter6 for detailed statistics).
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Chapter 3

Optimization

3.1 Overview

The goal of optimization is to determine values for design variables (i.e., a design) that satisfy

some objective as closely as possible. For example, in structural applications, the objective

may be to minimize the structure weight. In addition to an objective, there may also be

a number of constraints which must be satisfied for the design to be considered feasible.

Constraints for structural problems might require stresses and strains in the structure to be

below certain safe values. In our applications, we will consider the design variables to be

continuous, and we will also place upper and lower limits on the design variable values.

We consider only unconstrained optimization, where a continuous function is to be min-

imized with respect to design variables. The theory for this class of problems is discussed

extensively by Vanderplaats [13]. Several software packages exist for solving this class of

problems [14-16].
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The most efficient optimization techniques require precise knowledge of how the function

to be minimized responds to changes in its arguments (i. e., the sensitivity) [11,13]. Although

algorithms exist for performing the optimization without using this information directly, this

often requires many more function evaluations. In many cases, if the user does not supply

the sensitivities, they must be computed by a finite difference approximation.

Recently, there has been considerable effort to apply optimization techniques to various

nonlinear systems. Examples of how nonlinear systems were adapted to provide sensitivity

information can be found in applications of thermoelastic, transient heat conduction systems,

by Tortorelli et al. [12,17], elastic-viscoplasticity, by Zhang and Mukherjee [18], and airfoil

design, by Joh [19], Sorensen [20] and Burgreen et al. [21].

3.2 Design Optimization

As mentioned in Chapter 2, for optimization problems we define a function G(u(b), b)

which measures the quality of potential designs. We may, for example, define G to measure

the difference between the simulated solution and some prescribed desired solution, so that

G(u(b), b) = 0 represents the ideal.

Let us consider a simple optimization example involving one-dimensional steady state

heat conduction. The governing equation for this system is [22]:

\ ax/=0 (3.1)
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X

L

Figure 3.1: Steady State Heat Conduction

For this problem the temperature T takes the place of our generic unknown u in previous

sections. Figure 3.1 shows the physical domain. The material has uniform conductivity k

and length L. The boundary conditions are:

T(x = O) = 1.0 (3.2)

k C3TI = -h(T(L) - Too) (3.3)
Oxl =L

where h is the convection coefficient and Too is the ambient temperature.

solution for the temperature distribution in the slab is:

The analytical

T(x) = 1.0 h(1 - Too)x (3.4)
1 +Lh
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Supposeour objective is to determinevaluesfor h, Too and L. such that T(L/2) = 0.7.

We define the design vector b such that:

h

b=' Too (3.5)

L

It is important to recognize at this point that if the values for h, Too and L are considered

d.esign parameters then it is more appropriate to refer to the temperature solution as T(x, b).

We quantify the objective as:

G(T(x,b),b) = _/(T(L/2, b)- .7) 2 (3.6)

In order to apply a gradient based optimization algorithm, it is necessary to calculate the

sensitivities which we write as:

dG OG OG OT

db- 0b + c9--_CO-b (3.7)

For the objective function in Equation (3.6) there is no implicit dependency on the design

OG OT
variables so _ = 0. The quantity _ can be computed from Equation (3.4) as:

cOT

Oh

OT

COToo
OT

OL

hL(1-Too)x (1.0- Too)X

(1 + hL) 2 1 + hL (3.8)

hx

- 1 + hL (3.9)

h 2 (1 - T_) x

- (1 +hL) _ (3.10)
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of b vectors which give G(T(x, b), b) = O.

variables all satisfy our objective:

There is no unique solution to this optimization problem, as there are an infinite number

For example, the following values for design

b = (3.11)

b

b

.1

0.0

15.0

.15

0.0

10.0

.15

8.0

(3.12)

(3.13)

(3.14)
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3.3 Inverse Problems

Inverse problems are an interesting special case of design optimization problems. In an

inverse problem, some aspect of the solution u is known a priori (e.g., from experimental

data) and the intent is to determine values for b such that the simulation results match

the known results. Our previous example problem could be considered an inverse problem if

experimental results (e.g., measuring the temperature with a thermocouple) had determined

that the temperature in the middle of the slab was 0.7 degrees Celsius. In this case we would

like to determine the experimental conditions (h or Too) which lead to this result. As we

demonstrated, this problem had multiple solutions because we were trying to determine the

value of two parameters given a single data point.

In general, let us assume that experiments have determined the solution to a steady

state heat transfer problem. If the experimental results are designated fi, then the objective

function for the problem could be defined as:

(u,-G(u(b),b) = ':' -fi (3.15)

where N is the dimension of the vectors u and ft.
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3.4 Software

As mentioned previously, there are many optimization packages available for solving uncon-

strained problems like the example in this chapter. In this section we present some statistics

about solving our example problem using DOT [15].

Case

2

Design Initial Optimal Design

Constants Variables Values and Objective

h = .15
L = 10, Too = 0 h h = .05

G = 6.2.10 -is

h = .15
L = l O, Too = O h h = l

G = 3.2 * 10 -17

h = -1001
L = 10, Too = 0 h h = -1

G = .04

L=10

5 L=10

L=10

T_, h

Too, h

T_, h

h= 1, Too= 1

h= 1, Too =0

h=0, T_o =0

h=l

Too = .34

G = 4.5 * 10 -23

h = .939

Too = .336

G = 6.1 • 10 -14

h = 0.148

Too = -.006

G ---- 5.5 * 10 -19

h = .15
L = 10, Too = 0 h h = .05

G = 1.7.10 -16

h = .15
L = 10, Too = 0 h h = 1

G = 3.4 * 10 -25

h = -1001
L = 10, Too = 0 h h = -1

G = .O4

Func. Grad.

Evals Evals

14 4

25 7

11 2

6 2

8 3

6 2

20 0

34 0

13 0

Figure 3.2: Sample Problem Optimization Results Using DOT
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Rather than usethe analytic solutionpresentedin this chapter, in this sectionweemploy

a finite elementmodel of the example. Table 3.2 showsthe results of severaloptimization

runs. As we can seefrom cases1 and 2, the finite elementmodel gives the sameresults

as the analytical solution. In addition, these two casesalso demonstratethat using only

h as a design variable will yield a unique solution for a valid initial guess. Case 3 shows

how the optimization software can get lost if given a bad initial guess for a parameter. In

this case, h is a convection coefficient and would never, in practice, be negative. In fact,

if this were a constrained optimization problem, h > 0 would be a good candidate for a

constraint. Next, cases 4 through 6 show that having two design variables instead of one can

yield multiple optimal solutions. This is because there are two variables, h and Too, with

which to achieve a single data point, T(L/2) = .7. Finally, cases 7-9 show that even for a

problem with a single design variable the number of function evaluations necessary, in the

absence of gradient information, goes up significantly.

Let us now extend this example by allowing the conductivity of the material to be tem-

perature dependent (i.e., k(T) = 1.0 - .1T), making the problem nonlinear. It will be

necessary, then, to perform a computer simulation to solve for the temperature distribution

in the slab. Table 3.3 shows the results using a nonlinear material property. As we can see,

the optimal solution is different but the number of iterations used to solve the nonlinear

problem has not changed.
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Case

4

5

6

7

8

9

Design Initial Optimal Design

Constants Variables Values and Objective

h = .1341
L = 10, Too = 0 h h = .05

G = 6.99 * 10 -17

h = .1341
L = l O, Too = O h h=l

G = 3.6.10 -19

h = -1001
L = 10, Too = 0 h h = -1

G = .O45

h=l

L = IO Too, h h = l, Too = l Too=.34

G = 1.6 • 10 -19

h = .939

L=10 Too, h h=l, Too=0 Too=.336

G = 1.9,10 -13

h = 0.148

L=10 Too, h h=0, Too=0 Too=-.006

G = 3.1 • 10 -21

h = .13406
L = 10, Too = 0 h h = .05

G = 1.7 • 10 -9

L = 10, Too =0

L= 10, Too =0

h

h

h=l

h= -1

Func.

Evals

14

25

11

19

h -- .1341 34
G = 4.8 * 10 -18

h = -1001 13
G = .OO45

Grad.

Evals

4

2

2

3

2

0

Figure 3.3: Nonlinear Problem Optimization Results Using DOT
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Chapter 4

Software Design

Analysis of the optimization and simulation process has resulted in insight about how these

two processes can be easily coordinated. We have developed ways of improving interoperabil-

ity between different software packages by abstracting the behavior of the various components

in the system. In addition, we have considered the operations carried out during simula-

tion and formalized a framework for performing these tasks. In this chapter, the computer

implementation of this formalization is described.

4.1 Object-Oriented Design

Before describing the approach taken when writing the software , we present some back-

ground information about the techniques used. Our intention when writing this software

was to use object-oriented design techniques to create a system of reusable components

called a framework.
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In object-oriented programming, a program is constructed from a collection of interacting

objects. Each object has a set of operations which can be performed on it and this set defines

its interface. What operations the object can perform is determined by what class (or classes)

it belongs to.

To demonstrate some of these principles, we include some simple C++ code fragments.

Consider the class for geometric shapes shown in Figure 4.1. The permitted operations, or

methods, of an object which belongs to this class are Perimeter, Area and Describe. The

word public in this case indicates that the methods are part of its public interface, i.e.,

those seen by all other objects. Finally, the = 0 at the end of a method definition indicates

that there is no "default" way of performing the operation.

class Shape

{

public:

virtual double Perimeter() = O;

virtual double Area() = O;

virtual void Describe() = O;

};

Figure 4.1: Shape Class Definition

Many common shapes, such as circles, fit within this class. To differentiate them, we next

define a subclass, i.e. a specialization, of Shape called Circle. The definition of Circle can

be found in Figure 4.2. There are some very important differences between a Circle and

a Shape. First, all objects of the Circle class have data, called members, associated with

them. In this case, every Circle object has a radius associated with it. This radius is

private, which means it is not visible to other objects, only to the Circle.
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The next differenceis that a Circle knows how to computeits Perimeter and Area as

well as how to Describe itself. The definition of how an operation is performed is called

its implementation and a Circle object has an implementation for every method in its

interface. A class which defines an interface without completely implementing all methods,

such as Shape, is called an abstract class. A class with a complete implementation, such as

Circle, is called a concrete class.

Finally, it should be pointed out that for a Circle an additional method has been defined

called a constructor. A constructor is a method called whenever an object of a class is created

(or instantiated).

class Circle : public Shape

{

private:

double radius;

public:

Circle(double r)

};

{ radius = r; }

double Perimeter() { return 2.0*M_PI*radius; }

double Area() { return M_PI*radius*radius; }

void Describe() {cout << "Circle of radius " << radius << endl;

Figure 4.2: Circle Class Definition

In a similar fashion, Figure 4.3 shows how we could define two addition concrete classes,

Rectangle and Square. Note that Rectangle is a subclass of Shape and Square is a subclass

of Rectangle. The first interesting thing to note about a Square is that it only requires one

dimension for its constructor as opposed to Rectangle's two. In addition, it can reuse the

implementation of rectangle with the exception of its Describe method.

33



class Rectangle

{

protected:

double

public:

};

: public Shape

width, height;

Rectangle(double w, double h) { width = w; height = hi }

double Perimeter() { return 2.0*(width+height); }

double Area() { return width*height; }

void Describe() { cout<<width<<" by "<<height<<" Rectangle"<<endl; }

class Square

{

};

: public Rectangle

public:

Square(double side) : Rectangle(side, side) { }

void Describe() { cout<<"Square of size "<<width<<endl;

Figure 4.3: Rectangle and Square Class Definitions

Figure 4.4 shows a simple program which makes use of the objects we have defined. The

first line of our subroutine creates a Circle called c with a radius of 5. Next, we create a

2x3 Rectangle and a 7x7 Square. Then, we call the subroutine Sum, shown in Figure 4.5,

with various combinations of the objects we have created. The subroutine Sum only knows

that the objects being passed to it are Shapes and prints out information about the area of

the two shapes. The output to this program can be found in Figure 4.6.

In summary, each object has both an interface, seen by other objects, and an implemen-

tation, known only to itself. Supporting code is written which uses the operations in the

objects interface without knowledge of how those operations are implemented.
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main()

{

Circle

Rectangle

Square

Sum(c, r);
Sum(s, r) ;

Sum(c, s);
}

c(5.o);
r(2.0,3.0) ;

s(7.o);

Figure 4.4: Main Program

Sum(Shape asl, Shape &s2)

{
cout << "When I add the area of a ";

sl.Describe();

cout << "with the area of a ";

s2.Describe();

cout << "I get " << sl.Area()+s2.Area() << endl << endl;

Figure 4.5: Sum Subroutine

When I add the area of a Circle of radius 5

with the area of a 2 by 3 Rectangle

I get 84.5398

When I add the area of a Square of size 7

with the area of a 2 by 3 Rectangle

I get 55

When I add the area of a Circle of radius 5

with the area of a Square of size 7

I get 127.54

Figure 4.6: Program Output
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This chapter centers around two main objects, the simulation software and the opti-

mization software. The simulation software provides "results" and the sensitivity of those

results with the respect to the design wriables, while the optimization package requires an

"objective" to optimize. Between the simulation axid optimization software is the user's

specification of the objective, in terms of simulation results. Likewise, the sensitivity of the

user's objective to design variables is computed in terms of the simulation results sensitivity.

We have developed a set of abstract classes in C++ to model this relationship. There

are several benefits to using abstract classes for such calculations. First, they give us great

flexibility in the types of objects which can be used in the simulation. In addition, each object

typically builds on the sensitivity information provided by other lower level objects. For

sensitivity calculations in particular, these abstract interfaces allow us to do some important

consistency checking using the interface definition, independent of the object implementation.

These benefits are important because they greatly reduce the difficulty of verifying sensitivity

calculations.

4.2 Previous Work

Some very recent approaches to computer simulation have employed aspects of object-

oriented design. The notion of object-orientation has its origins in simulation, and is con-

sidered to have started with a programming language called Simula [23]. The compilers of

object oriented languages have recently become efficient enough that their use in simulation

has been steadily increasing. The most notable language of this type is C++, a full descrip-

tion of which can be found in Stroustrup [24]. Another language which has great potential
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for simulation is Sather, which is described in the Sather language specification by Omohun-

dro [25]. Discussion of object-oriented methods for large simulation projects can be found

in Yoon [26]. Examples of simulation projects which used object oriented languages include

Ptolemy [27] for system simulation, FEC [28] for finite element analysis, MOBILE [29] for

mechatronic systems and ICSIM [30] for neural networks.

In addition there have been a few attempts to combine object oriented design with

computer simulation software and sensitivity analysis. Calhoun and Lewandowski used an

object oriented approach to model a variety of dynamic systems [31,32]. The approach uses

operator overloading to track sensitivity information through the calculations. The major

drawback of this approach is that it does not allow for possible algorithmic improvements

because the formulation does not go beyond the system's differential equations.

There have also been several examples of object-oriented approaches to finite element

analysis. Raphael [33] represents an early attempt at an object-oriented approach. A more

advanced model was presented by Dubois-P_lerin and Zimmerman in [34]. This initial work

was done in Smalltalk, but for efficiency reasons the project was migrated to C+÷ [35]. Most

ofthe initial attempts to represent finite element analysis in C++ tend to favor reuse through

inheritance rather than compositional mechanisms.

An example of a generic simulation framework, with an emphasis on finite element

analysis, can be found in Tiller [36]. While the approaches described by Calhoun and

Lewandowski [31,32] are concerned only with determining sensitivity information, the Tiller's

approach exploits this information for the benefit of optimization. This object-oriented ap-

proach relies more heavily on composition than previous efforts. This system achieves better
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reuse by allowing the user to compose objects from abstract types rather than exhaustively

define all possible combinations of behavior through inheritance.

4.3 Optimization Abstractions

To solve optimization problems, it is necessary to relay information about the problem

specification to the optimization software. Although different optimization packages have

different ways of handling this information, the user typically supplies a procedure which

provides values and gradient values for the objective and constraint functions. Because each

package has a different scheme for relaying information, it is useful to develop a standard

"interface" for communicating information.

Our goal is to develop an interface which is as independent of the simulation software

package as possible. Developing such an interface involves determining the common fea-

tures of different problem specifications. The ideal interface should be broad enough to be

useful, but narrow enough so that all applicable optimization packages can be made to con-

form to it. We adopt the previously described notions about object-oriented design in this

implementation.

Figure 4.7 shows the interface used for generalizing the optimization software. Each item

in Figure 4.7 is a method which can be called for an object of the Optimizer class. The

methods themselves define the interface which describes the minimum information that is

required for an Optimizer. While objects may have additional methods, any reliance on that

information will then be specialized to that software package and will represent and would be

defined as a subclass. The Init ialize method allows the optimization software to initialize
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any internal data. The Iterate and Optimize methods direct the optimization software to

generate improved values for the design variables. Finally, the Add-Update method instructs

the optimization software of other procedures that should be called whenever a new design

is generated.

Optimization Software Interface

Initialize

Input: Problem Description

Description: Use information provided in the problem description (discussed

later) to initialize arrays.

Output: None

Iterate

Input: Number of iterations to perform

Description: Perform some number of optimization iterations (design improve-

ments)

Output: Number of iterations performed and whether the optimization is com-

pleted

Optimize

Input: Maximum number of iterations (optional)

Description: Iterate until finished or maximum iterations exceeded

Output: Whether the optimization is completed

Add-Updat e

Input: Code to be executed at the end of each design iteration

Description: Allows user provided code to be executed between each design iter-

ation (e.g., code for displaying optimization status)

Output: None

Figure 4.7: Optimization Package Interface

Well defined interfaces make software more modular. The interface described in Figure

4.7 makes it possible to replace one optimization package with another without changing the

form of the problem specification. Each optimization package represents an implementation

which conforms to the interface described in Figure 4.7. For example, we have created a C++
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classwhich conformsto the interfacein Figure 4.7and which calls DOT [15] to perform the

"underlying optimization.

Another object in our optimization system is the one which describes the design variables.

This object is characterized by the interface in Figure 4.8. For the example presented in

Chapter 3, the Vector method would return h, Too and L. In addition, the lower limit on h

returned by the GetLimits methods would be zero.

Design Space Interface

Initialize

Input: Number of design variables and their initial values

Description: Initialize internal data

Output: None

Vect or

Input: None

Description: Provides current design vector

Output: A vector of scalar values

GetLimits

Input: Design Variable Number

Description: Provides limits for each design variable

Output: Upper and Lower limits

SetLimits

Input: Design Variable Number, Upper limit, Lower limit

Description: Allows user to set limits for each design variable

Output: None

Figure 4.8: Design Space Interface

The most important part of the process is the abstraction for the problem specification.

Figure 4.9 shows the information required for the problem specification. For the example

presented in Chapter 3, the Space method would return a reference to the design specifi-

cation mentioned previously, while the Cost function would compute the objective function
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usingEquation 3.6. Figure 4.10 gives an overview of the relationship between the interfaces

discussed so far.

Problem Specification Interface

Initialize

Input: Design Space Information

Description: Associates a design space with the problem specification

Output: None

Space

Input: None

Description: Provides a description of the design space, see Figure 4.8

Output: Design Space Information

Cost

Input: Gradient Info Flag

Description: Calculates cost function and gradient

Output: Cost function and gradient

Constraints

Input: Gradient Info Flag

Description: Calculates values for all constraint functions and their gradients if

flag is set

Output: Constraint functions and gradients

Figure 4.9: Problem Specification Interface
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Optimizer

Cost Function Constraints

Design Space

Optimizable

Figure 4.10: Important Concepts
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4.4 Simulation Abstraction

Figure 4.11 shows an interface that should be compatible with nearly any kind of simulation

software. The methods in this interface, such as Solve-Initial and T±meStep, allow other

objects to control the simulation, stopping at critical times to make additional calculations

(e.g., calculating the objective function) based on the simulation results. Note that one of

the functions of the simulation software is to return a description of the simulation results

at each time step. Figure 4.12 shows the interface for simulation results. The need for a

generalization of results comes about because simulators can produce a variety of secondary

variables. For example a simulator may provide both displacements and stresses, and each

is considered a "result" in our model.
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Simulation Software Interface

Initialize

Input: Design information

Description: Information about the design is saved so the simulator can request

the values of design variables .during subsequent simulations

Output: None

Reset

Input: None

Description: Resets all internal variables.

started.

Output: None

Indicates a new simulation is to be

Time

Input: None

Description: Used to determine the current time in the computational domain

Output: Simulation Time

Solve-Initial

Input: Sensitivity flag

Description: This function determines the initial conditions (or steady-state so-

lution), and the sensitivity of the initial conditions if the sensitivity flag is set

Output: Whether the simulation completed successfully

TimeStep

Input: Sensitivity flag, Target time

Description: Instructs the simulation software to perform a time step, but not to

step past the target time. Sensitivities are calculated if the sensitivity flag is set

Output: Whether the simulation is complete

Result

Input: Result Index

Description: Returns a description of the simulation results for the current time

step.

Output: Results description

Figure 4.11: Simulation Software Interface
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Simulation Results Interface

Nu_lodes

Input: None

Description: Returns number of nodes in system for which the result applies.

Each node may have multiple degrees of freedom

Output: Number of nodes (integer)

NumEq

Input: None

Description: Number of equations (unknowns) in the system

Output: Number of equations (integer)

NumDOFS

Input: Node number

Description: Indicates how many degrees of freedom there are associated with

this node

Output: Number of degrees of freedom (integer)

EqNum

Input: Node number and Degree of freedom type

Description: Given a specific node and degree of freedom, returns the correspond-

ing equation (unknown) number.

Output: Equation number (integer)

GetSol

Input: Equation number

Description: Returns the scalar value of the unknown associated with a particular

equation

Output: Scalar

GetDUDB

Input: Equation number, Design variable

Description: Returns the sensitivity of the unknown associated with a particular

equation with respect to a design variable

Output: Vector

Figure 4.12: Simulation Results Interface
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4.5 Integrating Simulation and Optimization

The benefit of having designed simulation and optimization interfaces is that the integrating

code (the "glue" between the two) is the same for all problems. There is no need to be aware

of implementation details, nor is knowledge of the particular simulation or optimization

package required. This section describes the objective interface as well as integrating code.

Figure 4.13 shows the interface for objective specification. The TimeStep method exists

so the objective can be notified when each time step is complete. In addition using the

NextTime method, the objective is able to provide specific times it would like simulation

results for. This information is then returned to the object controlling the simulation and

this object makes sure that the objective object's TimeStep method is called at that time.

The logic for this integrating code, written in procedural style, is shown in Figure 4.14. The

object which interfaces with both the simulation package and the objective is called SimOpt.

Figure 4.15 shows the various objects involved. In addition, Figure 4.16 shows the

specifics steps that take place for solving this problem in an object oriented style. These

figures demonstrate how the various interfaces shown in Figures 4.7-4.13 interact.
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Objective Interface

Initialize

Input: A simulator description, and design vector

Description: Stores the simulator and design description for later use and initial-
izes internal variables

Output: None

TimeStep

Input: Sensitivity flag

Description: Tells the objective that the simulator has just completed a time

step, calculate contribution to objective if necessary. Also, calculate gradient if

sensitivity flag is set

Output: None

GetStatus

Input: None

Description: Returns whether the objective function calculation has been com-

pleted

Output: None

NextTime

Input: None

Description: Indicates the next target time (in the computational domain) when

the simulator will need to stop (for the purposes of calculating the objective).

Output: Time

NumCon

Input: None

Description: Indicates the number of constraints associated with this objective

Output: Number of constraints (integer)

Results

Input: None

Description: The objective function value (for example) is typically accumulated

from one time step to the next. This function returns the accumulated result.

Output: Value of objective (gradient if applicable) and constraints (gradients if

applicable)

Figure 4.13: Objective Interface
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IInitialize simulator

and objective I

Solve for initial

conditions.

(Is simulator done? ___

true if steady state)J _ ]

No

Yes

!

Done

Simulator takes [
time step (up to

next target time)

!

...] Find out next target

'1 time for objective

Figure 4.14: Integrating Logic
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Object: DOT

Type: Optimizer

Desc: Interfaces with

DOT subroutines
k

Object: SO

Type: SimOpt

Desc: Runs simulation

and computes objective.

Object: FEMLIB

Type: Simulator

Desc: Generic simulation

package.
i

Object: Temp

Type: Result

Desc: Temperature

solution from FEMLIB

Object i DES

Type: Design

Desc: Provides design

(e.g. h=l.0,,,.T =0.0)
i

Object: OBJ

Type: Objective

Desc: Calculates G(u,b)

(e.g. {T(L/2)-.7)^2)

Figure 4.15: Sample Objects

Main

....... v,o.(.,o
N .'''" SoloelRuult

J ,. I ---"--'- I

,/ , , _'_tSol ,

/Cost... I so I_-----------_1 T_p

, VeetoKseO " P OB$

Operations inside the dashed line are repeated

for each optimization iteration.

Figure 4.16: Sample Flow
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C

K 1 rtl n 2

.....--.--._

Figure 4.17: Mechanical Example

4.7.1 Nodes

A node is defined as a collection of degrees of freedom. In the example shown in Figure 4.17,

the degrees of freedom would be the displacements, in the x direction, of nodes no, na and

n2.

The interface for node objects is shown in Figure 4.18. Equation numbers for a node's

degrees of freedom can be determined by using the dof method. For finite element problems,

a node may have an associated spatial location. The spatial location of the node is provided

by the GetPos method, and its dependence on design variables is expressed by the Par

method. It is important to note that these spatial locations do not represent degrees of

freedom. Some problems, like our example in Figure 4.17 have displacement degrees of

freedom, but these would be associated with values returned by the dof method and not the

GetPos or Par.
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Node Interface

Initialize

Input: Nodal Coordinates

Description: Initializes the spatial positions of nodes

Output: None

P_tr

dof

Input: A design variable

Description: Calculates the sensitivity of the node's spatial position, {x,y,z},

with respect to a particular design variable

Output: o_ _ o_ and a flag indicating whether all derivatives are zeroOb ' Ob ' Ob

Input: A degree of freedom type

Description: Returns the equation associated with the particular degree of free-

dom type for this node

Output: Equation number (integer)

GetPos

Input: None

Description: Returns the spatial coordinates of the node

Output: Nodal coordinates (three reals)

Figure 4.18: Node Interface
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4.7.2 Components

A description of the interface for component objects can be found in Figure 4.19. The

quantity returned by the Mass method has two derivative quantities, the tangent mass con-

tribution returned by the TanMass method and the explicit design sensitivity returned by

the Pax'Mass method. This same holds true for the Damp, Stiff and Force methods.

Element objects contribute to the constraints of the system. FEMLIB constructs con-

straints for each degree of freedom according to the following general equation:

Mii + Cu + Kx = f (4.2)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix and f is the

force vector. Equation (4.2) represents a second-order system of differential equations where

each individual equation is a constraint for a specific degree of freedom in the system.

At each time step, we form a system of equations typically derived from a conservation

principle. Each component makes its contribution, in turn, to this system. Initially the

system of ordinary differential equations (ODEs) contains no coefficients, i.e.,

0 0 0

0 0 0

0 0 0
/
X0

X2

0 0

0 0

0 0

0

0 '

0

XO

X2

0 0 0

0 0 0

0 0 0

Xo 0

X 1 _---_ 0

x2 0

(4.3)

Our example in Figure 4.17 contains two Spring objects, a Dashpot object, two PointHass

objects and a PointForce object. The system of ODEs is constructed by assuming the sum
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Component Interface

Mass

Input: Domain object, transient context

Description: This function computes the mass matrix (M) contributions for var-

ious degrees of freedom. The transient context allows quantities to be calculated

in the context of previous time steps.

Output: Mass matrix contribution

ParMass

Input: Domain object, design variable, transient context

Description: Same as the Mass function except the quantity calculated is 0M

Output: 0M matrix contribution

TanMass

Input: Domain object, design variable, derivative specification, transient context

Description: Same as the Mass function except the quantity calculated is 0M'uOvk J

where v and u are provided in the derivative specification.

Output: °M° u matrix contribution
ark 3

the functions Damp, ParDamp, TanDamp, Stiff, ParStiff

and TanStiff are similar to the ones listed above and will
not be described

Force

Input: Domain object, transient context

Description: Computes the force vector

Output: Force vector contribution

ParForce

Input: Domain object, design variable, transient context
of

Description: Computes the _ vector

Output: of vector contribution

TanForce

Input: Domain object, design variable, derivative specification, transient context
of

Description: Computes the tangent force vector contribution g-_

Output: of matrix contribution

Figure 4.19: Component Interface
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of the forces at each node is zero. Each spring affects the x displacement (degree of freedom)

at two nodes and makes a contribution to the equations associated with those degrees of

freedom. The system of ODEs is formed by collecting contributions from each component

by calling the Mass, Damp, Stiff and Force method of each component.

After adding the contributions of the springs, due to the Stiff method of the Spring

class, the system of ODEs becomes:

0 0 0

0 0 0

0 0 0

I /
XO

J

X2

0 0

0 0

0 0

0

0

0

XO K1 --K1 0

-K1 KI + K2 -K2

t
I 0 -K2 K_
I.

_0

_2

,)

)

)

(4.4)

Next, we consider the dashpot whose contribution, due to the Damp method of the Dashpot

class, appears in the C matrix:

0 0 0

0 0 0

0 0 0

'1X0

-jX2

C

-C

0

-C

C

0

0[ 01
0 ' xl '+

K1 -K1 o

-K1 KI+K2 -K2

0 -Ks Ks

XO//0/X 1 _ 0

X2 0

(4.5)
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Then, weconsiderthe point masses,producedin the Massmethod of the PointMass class,

andour systemof ODEs is complete:

0 0 0

0 M, 0

o o M2

XO

..

X2

C -C

-C C

0 0

0 _o

0 I xl

0 _2

gl

' + -K1

0

-K_ 0

K, + K2 -/(2

-K2 K2

Xo

' Xl

X2

(4.6)

Lastly, we add in our load F, due to the Force method of the PointForce class, which gives

the final form for our system of ODEs:

0 0 0

0 M1 0

0 0 M2

Xo

xl [+
2:2

C -C

-C C

0 0

r

0 -_o

0 _ .,4:1

0 -_2

gl

' + -K1

0

-K: 0

K, + K2 -/(2

-K2 /(2

Xo

' Xl

X2

(4.7)

Although the notion of a component was originally set up to deal with finite elements, a

variety of systems, like the one shown above, can be modeled with this generalized approach

(e.g., electrical circuits, mechanisms). In fact, one possible application of this generalized

formulation is for simulating mixed systems containing drastically different objects. For

example, it would be possible to simultaneously simulate an electrical circuit and the heat

transfer due to resistive elements in the circuit. This would allow a single package to simul-

taneous consider several aspects of a complex system.

0

0

F
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4.7.3 Properties

Properties represent scalar values which help to describe the behavior of components. In

our example, the properties in the system would be KI, /(2, C, M1, M2 and F. Require-

ments for computing sensitivity with respect to the design and solution are mandated by

components having the same requirement. For example, since a PointMass object provides

methods ParMass and TanMass the component must have a way to determine 8__M_tMand
_bj Ou "

The property interface is shown in Figure 4.20. We see a method Eval which returns a

computed quantity, e.g., a springs stiffness, and two other methods TanEval and ParEval

that return that same quantity differentiated by the solution and design variables, respec-

tively. By allowing properties to have complex relationships to design and solution variables

we gain flexibility in being able to define that relationship in each problem as we see fit.

This gives us greater expressiveness when posing our simulation and optimization problems,

and it allows us to substitute a non-linear spring into our system by defining a subclass of

property without the need to modify any existing code.

In the simplest case, properties take on the value of a design variable. However properties

may also be related to design variables through more complex relationships. For example,

the continuous ambient temperature distribution visible to a surface of convection elements

may be a spline characterized by design variables. For such cases, the derivative of the

ambient temperature with respect to a particular design variable must be computed in order

oR
to compute b-_j" In general, property objects compute their scalar values and sensitivities of

these values as functions of the solution and design.
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Property Interface

IsConst

Input: None

Description: Tells whether the property is a constant value. This allows for many

optimizations to be made by the calling object. However, even if the property

is constant, then tangent and partial derivative methods must still return arrays

initialized to zero because the caller is not obligated to consider possible opti-

mizations.

Output: Returns a flag indicating whether it is constant.

IsFunc

Input: Degree of freedom, transient context

Description: Tells whether a property is a function of a particular degree of

freedom. This method is also used to allow certain optimization but is subject to

the same restrictions as above.

Output: Returns a flag indicating whether it is a function of the degree of freedom

Eval

Input: Transient context, domain, set of nodes, Gauss points

Description: Calculates the property at each Gauss point

Output: Returns value at each Gauss point

TanEval

Input: Transient context, degree of freedom, domain, set of nodes, Gauss points

Description: Calculates the derivative a property with respect to a particular

degree of freedom

Output: Returns derivative value at each Gauss point

ParEval

Input: Transient context, design variable, domain, set of nodes, Gauss points

Description: Calculates the derivative a property with respect to a particular

design variable

Output: Returns derivative value at each Gauss point

Figure 4.20: Property Interface
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Several common property types have already been implemented. The most obvious is

a property which is constant. In addition, a property which is equal to a particular design

vaxiable, called a design property, has been implemented. One of the more advanced prop-

erties is one which is constructed piecewise in time, by data points which are themselves

material properties.

60



4.7.4 Domains

The computational domain for simulation, or simply "domain", is also generalized for

the purposes of flexibility and reuse. The domain is a collection degrees of freedom and

constraints. Unlike the other objects mentioned, there are no computations performed by

the domain objects. Figure 4.21 shows how generic information such as the number of

equations (NumEqs), and number of nodes (NuruNodes) can be accessed. In addition, the

mapping from nodes and degrees of freedom to actual equations is also accessible using the

EqNum method. Finally, the bookkeeping functions AddNode and AddElem are also present.

The assembling of equations, as seen in Equations 4.3-4.7, is performed by considering, in

turn, each component in the domain.
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Domain Interface

NumNodes

Input: None

Description: Number of nodes in the domain

Output: Number of nodes (integer)

NumEqs

Input: None

Description: Number of equations (unknown) in the domain

Output: Number of equations (integer)

NumNodalDOFS

Input: Node number

Description: Number of degrees of freedom associated with a particular node.

Output: Number of degrees of freedom (integer)

NodalDOF

Input: Node number and index

Description: Returns the degree of freedom type for the index th degree of freedom

associated with a particular node.

Output: Degree of freedom type (integer)

EqNum

Input: Node number and degree of freedom type

Description: Returns the equation number for a particular node and degree of freedom

Output: Equation number (integer)

hddNode

Input: Node description

Description: Instructs domain to keep track of this node

Output: None

hddE1 em

Input: Element description

Description: Instructs domain to keep track of this element

Output: None

NodeSet

Input: None

Description: Returns the collection of nodes in the domain

Output: Set of nodes

ElemSet

Input: None

Description: Returns the collection of elements in the domain

Output: Set of elements

Figure 4.21: Domain Interface
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4.7.5 Integrators

The system of equations described in Section 4.7.6 may arise from a finite difference time

integration scheme such as forward or backward Euler applied to a nonlinear system of second

order ordinary differential equation of the general form:

M(u(b),b)ii + C(u(b),b)u + K(u(b),b)u = f(u(b),b) (4.8)

The integrator converts this equation into a system of nonlinear algebraic equations for the

solution at the next time step, e.g.,

Au TM = p (4.9)

This system of nonlinear algebraic system of equations can easily be made to conform to the

interface described in Figure 4.22.

There are a number of integration schemes possible (see Sections 1.4 and 1.5). For a given

integration scheme, we want to be able to compute not only the solution, but its sensitivities.

The integrator objects act as "middlemen" between the underlying nonlinear second-order

differential equations, e.g., Equation 4.7, and the desired system of nonlinear algebraic equa-

tions. They must perform not only a transformation, which forms the residual vector given

the underlying second-order system, but they must also transform sensitivity information.

In other words, whatever transformation the integrator performs to calculate the residual, it

must also perform a similar transformation for sensitivity information (tangent matrix and

pseudo-load) as well.
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4.7.6 Residual Systems

Recall our general approach to solving systems of nonlinear equations from Chapters 1 and 3.

FEMLIB assumes that general nonlinear residual and sensitivity equations may be written

in the following form (from Section 2.3):

ORub,
-0--_u( ( ) v(b) b)Au,=-R(u,(b),v(b),b) (4.10)

du_ [0R]-I 0R (4.11)dbk _u Obk

These equations can be used to solve any nonlinear system for which the residual (R) and

tangent matrix OR(-8-_) can be computed. In addition, if the pseudo-load (- is available

sensitivity information may also be computed. Figure 4.22 shows the interface for such a sys-

tem (boundary conditions have been omitted for brevity). The Newton-Raphson algorithm

used in FEMLIB uses the interface in Figure 4.22, and is independent of the implementation

details of the particular system of equations being solved.

When performing a Newton-Raphson iteration, the residual and tangent matrix are re-

quested using the Residual and Tangent methods. Then the solution can be retrieved and

replaced using the Get and Set methods. Finally, the sensitivities can be computed using

the pseudo-load, -0._RR provided by ParRes.
Obk '
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Residual System Interface

Initialize

Input: Description of solution

Description: Memory to be used for the solution vector is allocated to the residual

system

Output: None

Residual

Input: None

Description: Compute residual given current value of the solution

Output: The residual vector

ParRes

Input: Design variable oh-JR

Description: Calculate o%-;

Output: A vector representing

Local

Input: None

Description: Return a description of the current solution

Output: Solution information, (e.g., Number of equations, current solution, sen-

sitivity information)

Num

Input: None

Description: Return number of unknowns for the system

Output: Number of unknowns (integer)

Get

Input: Unknown number

Description: Determine unknown's current value

Output: Unknown value (real)

Set

Input: Unknown number and value

Description: Set unknowns current value

Output: None

Tangent

Input: None

Description: Compute and return tangent matrix

Output: Tangent matrix

Figure 4.22: Residual System Interface
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4.7.7 Transformations

The objects presented in the next two sections are useful in the context of finite element

formulations. Transformations are designed to be used for Gaussian integration where an in-

tegral is simplified by mapping it onto a regular geometry. The transformation is generalized,

and the interface that results can be seen in Figure 4.23.

Abstracting transformations allows the underlying mathematical models present in in-

tegrals to be independent of the transformations (i.e., one-, two-, three-dimensional and

axisymmetric formulations). Note that the interface presented in Figure 4.23 allows trans-

formations to be a function of design, but not of the solution.

The At method in Figure 4.23 directs the Transformation object to compute, at a specified

point on the "local element", the Jacobian, its inverse and its determinant. Likewise, the

ParAt method directs the object to compute the design sensitivity of the Jacobian, its inverse

and its determinant.
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Transformation Interface

At

Input: A point in space

Description: Computes some internal values for representing a transformation at

a particular point

Output: None

ParAt

Input: A point in space, design variable

Description: Compute some internal values for representing the sensitivity of the

transformation at a particular point

Output: Returns a flag indicating whether the transformation is a function of the

design variable

Pos

Input: None

Description: Exports information about the point of last 'At' or 'ParAt' call

Output: A point in space

NumDim

Input: None

Description: Provides knowledge of how many dimensionality of the transforma-

tion

Output: Number of dimensions (integer)

JJ Ji, Par J, ParJi

Input: two axes xi and xj

Description: These methods return the entry in the Jacobian (J), inverse J acobian
--1 " • OJ • • • 0J -1 •

(J), partial Jacoblan (_--g) and partial reverse Jacoblan (--_-) matrices (respec-

tively) at the point of the last 'At' or 'ParAt' call. Which entry is determined by

the two axes arguments.

Output: Scalar

dot J, Pardet J

Input: None

Description: These two methods return the values of the Jacobian determinant

(]JI) and partial Jacobian determinant (01JI)0brespectively

Output: Scalar

Figure 4.23: Transformation Interface
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4.7.8 Basis Functions

Basis Function Interface

NumNodes

Input: None

Description: Number of basis functions provided. In a finite element formulation,

this is equivalent to the number of nodes in an element

Output: Number of basis functions (integer)

NtmDim

Input: None

Description: Number of arguments each basis function takes. In a finite element

formulation, this is equivalent to the number of dimensions the element spans

Output: Number of arguments (integer)

Eval

Input: Spatial coordinate

Description: Computes values for all basis functions at a particular point

Output: Values of basis functions and their derivatives with respect to their ar-

guments

Figure 4.24: Basis Function Interface

Another topic, related specifically to finite element formulations, is basis functions. When

using a finite element formulation, basis functions are used to approximate the solution

between nodes. The choice of basis functions can influence the accuracy of the results since

the basis functions are used to interpolate degrees of freedom over the elements. The interface

for basis functions is shown in Figure 4.24. As in transformations and properties, many basis

functions axe particularly common. Linear basis functions for one, two and three dimensions

have been implemented.
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4.7.9 Testers

As noted in Section 4.6, the most difficult problem in debugging sensitivity calculations is

locating the source of the error. The various objects described in Sections 4.7.1 through

4.7.8 calculate a quantity, and the derivative of that quantity with respect to the solution

and design vectors. It is possible to verify the consistency of these results by performing a

finite difference calculation on the computed quantity.

For example, if we have a given property describing a non-linear spring whose value is

given by:

k = K1Ax + g2/kx 2 (4.12)

then we can compute the sensitivities in one of two ways. The first way would be to call

ok the non-linear springthe ParEval or TanEval methods. Thus, if we wanted to evaluate

property would compute

Ok OK1 OK2
-- Ax + _-7-, Ax (4.13)

Obj Obj ooj

where KI and K2 may be given in turn by other property objects. The second way we could

ok would be to use a finite different approximation, e.g.,compute

Ok k(b)-k(b+Abi) (4.14)

The former technique requires that the code for computing Equation 4.13 be correct. The

latter approach, although expensive, will be give accurate results if Abi is small enough to

avoid truncation error and largest enough to avoid round-off error. By computing _;,°kboth
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ways we can make sure that the former technique has been implemented correctly. This

" approach can be taken for nearly every object which returns a computed value, both tensor

and scalar.

The objects which do this testing are referred to as testers. For many of the classes

described there is another class of objects meant to test for this "derivative consistency".

Since the interfaces to the classes described in Sections 4.7.1 through 4.7.9 are the same for

all instances, the testers operate independently of the implementation details of any given

instance. In other words, the ability to test a given a property is independent of whether it

represents, for example, a piece-wise linear function or a cubic spline.

4.7.10 Summary

The "big picture" of FEMLIB, is that separating out the various concepts permits the

different aspects of the problem to be independent. For example, given a working model of

the example shown in Figure 4.17 we can substitute any variety of non-linear springs into

the system without having to change any of the existing code. The goal is to reuse as much

of the supporting code (e.g., integration schemes, linear solvers) while retaining the ability

to add new components as the need arises.

4.8 User Interfacing

One way to construct a problem description is to write a C++ program by creating and

connecting objects from FEMLIB. This becomes tedious because every change in the problem

statement requires recompilation of the C++ code describing the problem. For this reason,
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TCL [40] has been used to create an interpreted front end for problem descriptions. TCL

scripts can be written to resemble conventional input files for FEM packages.

However, there are two important differences between the capabilities of the TCL inter-

preter and a typical FEM package. The first difference is that a TCL interpreter can operate

in either batch mode, where a group of operations are performed to completion, or in an

interactive mode where operations are performed interactively. The second difference is that

while TCL controls the simulation, the simulation is only one aspect of the TCL front end.

Typical interactive tasks within the TCL front end might examine sensitivities at individual

time steps, restart the simulation with a different design, optimize for a particular objective,

etc.

Figure 4.25 shows an example of an input script for the TCL front end. This script

represents the problem solved in Chapter 3, where the conductivity was temperature depen-

dent. The important thing to notice in Figure 4.25 is how the simulation parameters, the

simulation, and the objective are all defined.

For example, part 1, the declares the design variables. An "=" preceding the value of

a design variable indicates it should be considered constant (i.e., not modified during an

optimization). Part 2 contains statements about what algorithms should be used for solving

the nonlinear system of equations, linear systems of equations and sensitivities.

Starting in part 3 we start to see statements specific to the finite element method. Part

3 itself declares how the degrees of freedom will be interpolated over the finite elements. For

example, the statement

field T -dof temp -bf Ibf42
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# Part I: Declare design variables and name them

parameter T_infty =0.0

parameter H .05

# Part 2: Define what algorithms will be used

senses ilu -check I -tol le-5

integration steady -tol le-8 -log CS.out

solver nr -isolve slbc -iter 75

# Part 3: Define fields

field T -dof temp -bf Ibf42

field Ts -dof temp -bf ibf21

fieldprop air -cony -templ Ts -temp2 T_infty -h H

fieldtype q

# Part 4: Additional properties

property K -table -field T -data [list {-i0.0 2.0} {I0 0.0}]

# Part 5: Describe governing equations

model ml cond -dof temp -prop K -ngp {2 2}

model m2 flux -dof temp -flux q -ngp {2}

model m3 flux -dof temp -flux air -ngp {2}

# Part 6: Define transformations

trans cart -type cart -bf ibf42

trans carts -type cart -bf ibf21

# Part 7: Instantiate nodes

node nl 0.0 0.0 0.0

node n121 10.0 10.0 0.0

# Part 8: Instantiate elements

element -name quadl -trams cart -nodes {nl n2 n13 n12} \

-field "T {nl n2 n13 n12}" -model ml

,°,

element -name surfl -trams carts -nodes {ni12 n111} \

-field "Ts {n112 n111}" -model m3

# Part 9: Boundary conditions

essent -node nl -dof temp -val 1.0

..°

essent -node nll -dof temp -val 1.0

# Part 10: Simulation objective

solgoal -node n61 -dof temp -val .7

Figure 4.25: Simple TCL Script
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defines a field T which interpolates temperature (temp) using a Linear Basis Function for 4

noded elements in 2 dimensions. Of course, use of a given basis function must be consistent

with the number of nodes in the element and the dimension of the problem. Part 4 shows

one way a nonlinear material property can be defined. Part 5 shows how we declare what

"governing equations" we will use. For example, the statement

model ml cond -dof temp -prop K -ngp {2 2}

defines a new "model" called ml which uses the governing equation for heat conduction with

K (from part 4) as the thermal conductivity property employing 2x2 Gaussian integration.

Next, in part 6, we declare the transformation used to transform the governing equations from

the local to the global elements. Up until now, we have not defined a specific finite element

problem, instead we have laid the building blocks on which to construct our simulation.

In part 7 we begin to define a specific problem by declaring the spatial locations of our

nodes. Part 8 is a particularly good example of how we use a "compositional" style to piece

the specific behavior we want. For example, the statement

element -name quadl -trans cart -nodes {nl n2 n13 n12} \

-field "T {nl n2 n13 n12}" -model ml

creates an element quadl which uses the transformation cart. In addition quadl is attached

to nodes nl n2 n13 and n12. The nodes appear twice because the -nodes directive indi-

cates nodes used for spatial interpolation while the -field directive indicates nodes used to

interpolate the field T and these two transformations are independent of each other. Finally,

the -model directive attaches a particular governing equation to the element.
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The remainder of our example is not specific to the finite element method. Part 9 shows

how essential boundary conditions are imposed. Finally, part 10 gives an example of how

optimization objectives can be declared along side the simulation description.
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Chapter 5

Radiation Modeling

5.1 View Factors

We consider non-paxticipating radiative heat transfer, where many surfaces radiate to each

other. In addition, we assume that each surface absorbs all incident radiation. For each pair

of surfaces A and B, the view factors, FA_B and FB_A measure the fraction of surface B

visible to surface A, and the fraction of surface A visible to surface B, respectively. In this

chapter we discuss how these view factors appear in the calculation of radiative heat transfer,

and describe new methods for calculating them for axisymmetric cylinders and annular disks.

To accurately model many solidification processes it is necessary to model the radiative

heat transfer between different components. This requires the calculation of view factors

between the different surfaces participating in radiative heat transfer. These view factors

can be calculated analytically for simple geometries [22] or numerically [41,42]. Regardless
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of how they are computed, for large problems the number of view factors involved results in

a significant amount of time being spent in calculating the view factors.

The total heat radiated from surface A to B may be expressed (el. Lienhaxd [22]) as:

cOS ACOS B
,/rs 2

dA dB (5.1)

where T is the temperature of the surfaces, 3 represents the angle between the surface normal

and a line connecting the two surfaces, and s is the distance between the two surfaces.

We assume that the temperature distribution is constant over each surface, which reduces

Equation (5.1) to:

= a(T]- T_)FA-_BAA (5.3)

where AA is the area of surface A. The "geometric" relationship between surfaces A and B

is represented by FA,B, the view factor from surface A to B. We recognize from Equation

(5.2) that:

1 cos HA cos JSnd A dB (5.4)

There are several useful properties associated with view factors [22]. The simplest, called

the enclosure property, is:

FA-,_ = 1 VA (5.5)
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where a represents, in turn, every surface visible to A. Another useful property, called the

reciprocity property, comes from the fact that the heat transfered from surface A to surface

B must balance the heat transfered from surface B to surface A. The reciprocity property is

stated mathematically as:

AAFA-_B = ABFs_A (5.6)

This property is useful because it reduces the number of view factors which must be calcu-

lated via Equation (5.4). Finally, if surfaces B and C are disjoint surfaces, then we may use

the addition property:

FA- (B+c) = FA-,s + FA c (5.7)

5.2 Calculation

For our example problem, it will be necessary to compute view factors for components in

an axisymmetric, co-axial cylindrical assembly. While numerical techniques may be used in

cases where the geometry is so complex that analytical formulations are intractable, they are

often quite expensive to perform. For cylindrical assemblies, it is possible to compute view

factors analytically by combining analytical expressions due to Brockman [43] with the above

properties. To our knowledge, most of these expressions have not been derived previously.

Brockman considered radiation between two concentric cylinders of equal length and two

annular disks, as illustrated in Figure 5.1. These two cylinders define the indicated surfaces

b, i, o and t, corresponding to the bottom, inner, outer and top surfaces, respectively.

Brockman parameterizes the view factors in terms of outer radius, Ro, inner radius, R_, top
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Figure 5.1: Two Concentric Cylinders

radius, Rt, bottom radius Rb and cylinder height, H. It is convenient to define the following

terms before presenting the view factors:

RO

Xo- H (5.8)

Ri

x, = -_ (5.9)
Rt

x, = _- (5.1o)

Rb
Xb- H (5.11)

V,o = _/x_- x_ + _/x_- x,_ (5.12)

_ = _/x_ - x_ + _/xg- x,_ (5.13)
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Brockman provides the following expressions for the view factors:

FO--I.O =

Fo_+i =

0_

' (1+2Xo-_1+4Xo 2)

c°s-1 Xo

rc(X°-XO-_/(1 + 4Xo2) tan-1 \ x, JJ,

O,

1,

1

_;__ {1 2 x. + TrX _-_(Xo- x_ - 1)cos-' Xo

_(Xo 2 - X_) - 2X, tan-' _/Xo 2 - X_ +

X/(1 + (Xo + Xi)2)(1 + (Xo - Xi)2)*

Io+(Xo+X,)2)(Xo-X,) 1.
tan -1 V(l+(Xo_XO2)(xo+xo .f, otherwise

when Xi = 0

when Xo = Xi

when Xo = Xi

when Xi = 0

otherwise

(5.14)

(5.15)
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F_ --_ o

_

;(x;-.,,,_)(_(Xo x?) cos-'

- , - -

¢(1 + (Xo + X02)(1 + (Xo - Xt)2),

[/O+(Xo+X,)*)(Y?_-(Xo-X,)_)
tan-1 _,V(1+(Xo_X,),)((xg+x,p_y_o)} -

¢(1 + (Xo + Xi)2)(1 + (Xo- Xi)2),

{ Io+(Xo+X,)_)(Xo-X,)_'_
tan-1 kVo +(Xo-X,)2)(Xo+XO ,] ) ,

(¢(1 + (At + Xo)2)(1 + (Xt- Xo)2)) -

1 - Xo2 + X?),

, 2 x,' (_(Xo-x?)(_-co_-'_o)-_(x_-xl)

2Xi (tan-' (¢X2o-x? +¢x2t -x?) -

¢(1 + (Xo + Xt)2)(1 + (Xo - Xt);)*

tan-' (./i1+(x°+x')2)(Y_-(x°-x')2)]
\V('+(Xo-X,)_)((Xo+X,)2-v3)} -

¢(1 + (Xo + Xi)2)(1 + (Xo- Xi)2)*

{/(l+(Xo+X,)_)tXo-X,)'_
tan-1 kVo+(Xo_XO2)(Xo+XOj --

(Xo+X,_Iv,_-(Xo-X,)_
(xo_ - x,_) t_n-' _Xo-X,j V(xo+x,)_-v,_}

when Xt = Xi

when Xt = Xo

when Xi - 0

otherwise

(5.16)
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gt_b

,

(1+x? +xg - ¢(1+(x, + xb/_)(1+ (x,- xb)2)),

1 1 2 x.+_(x_ - x?) cos-' x,

¢(1 + (Xt + Xb)2)(1 + (X, - Xb)2)*

{ ](l+(x,+x_)2)(v_-(x,-xb)_)
tan -1 k,V(I+(X,_Xb)2)((X,+Xb)2_V, 9 ) +

¢(1 + (At + Xi)2)(1 + (Xt- Xi)2),

[/ll+lx,+x,)_)(x,-x,)'_
tan-1 k,Vo+(x,_x,)2)(x,+x_) j +

¢(1 + (Xb + Xi)2)(1 + (Xb- X,)2)*

{/(,+(xb+x,)_)lxb-x,)
tan-l k v(l+(Xb-Xd2)(x_,+xd ) ) ,

when Xb = X;

when Xi = 0

(5.17)

otherwise

For our applications, we will assume that Rb = Rt = Ro.

View Factor Origin

Fo_ Equation (5.15)

Fo-_o Equation (5.14)

Ft_o Equations 5.16)

Ft_b Equations (5.17)

Fifo Reciprocal of Fo_i

Fo_t Reciprocal of Ft_o

Fb_t Reciprocal of Ft-+b

Ft_ Enclosure (1-Ft_o-Ft_b )

F_-+t Reciprocal of Ft-+i

Fb_i Symmetry using Ft..+_

Fi-_b Reciprocal of Fb_i

Table 5.1: View Factors for Two Concentric Cylinders
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Figure 5.2: Complex Concentric Cylinders

Unfortunately, the geometry shown in Figure 5.1 is not sufficiently general for our ap-

plication. We therefore generalize the case considered by Brockman to the one presented in

Figure 5.2. All possible configurations of two concentric co-axial cylinders radiating to each

other are shown in Figures 5.3. Likewise, all possible configurations of an annular disk and

cylinder radiating to each other are shown in Figure 5.4. The view factors for the cases in

Figures 5.3 and 5.4 can be expressed in terms of the view factors for the surfaces in Figure

5.2. So we begin by showing how we can compute all combinations of view factors for Figure

5.2.

Several of these view factors correspond directly to view factors in Table 5.1. For example,

the view factors, Fa_c, FH-.,B and FF_D are equivalent to Fo_i. The full list of these view

factors is given in Table 5.2. Several more view factors can be derived using the addition
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property. For example, the view factor FErn can be expressed as:

FE_H = FE_H+G+F -- FE._G+F (5.18)

where FE_H+a+F and FE_a+F can both be computed directly from Fb_o. The remaining

composite view factors are listed in Table 5.3. Additionally, the view factor Fa_A is the

reciprocal of the view factor FA-,c which can be computed from Ft_o as shown in Table 5.2.

Finally, Table 5.5 contains all of the remaining view factors, which require more complex

manipulations. As an example, let us consider the derivation of view factor FF_B. Looking

at Figure 5.2, we see that surface B sees surfaces A, H, G,E and F. We already know,

from Tables 5.2-5.5, the view factors for FB_A, FB_H, FB_a and FB_E. We may now use

the enclosure property to express FB_F as:

FS_F =- 1 - FB_A -- FB_H -- FB-.,a -- FB_E (5.19)

Note that we can then compute FF_B by using FB_F and the reciprocal property.

It is important to note that every view factor in Tables 5.2-5.5 depends only on view

factors previously listed in the table, or in a previous table. This avoids any "circular"

dependencies between the view factors.

Table 5.6 lists all the configurations shown in Figure 5.3 and describes how each can be

expressed in terms of the view factors shown in Tables 5.1-5.5. Likewise, Table 5.7 lists all

the configurations shown in Figure 5.4 and describes how each can be expressed in terms of

the view factors shown in Tables 5.1-5.5.
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View Factor Derived from

FS-+A Fi+_
FB-.+H Fi+o

Fs + r" F_-_b

Fc--+r Fi-+ t

Fc--+a F__+o

Fc-+x F_-+b
FA-+s F, _+_
Fa-+c Fo-.+i

F D-+X Fi-+ t

F.-+F Fi-+o

FF-+D Fo+i

FD-+E F_-+b

FX +C Fb-+i

Fc-+x Fi-+ b

Fx +a Fb.-+o

FG-+x Fo-+b

F X =+A Fb-+t

F A.-+H Ft.-+ o

FH-.+ A Fo--+t

Fs-+r Fb+o
FF-.+E Fo-+b

FA--+a Ft--+o

F_-+c Fb-+o

FH--+ y Fo.-+b

Fy.+H Fb-.+o

F H --+H 1;'o-+o

Fa-+a Fo_.+o

FF..+F Fo-+o

F_-+D Fb-+i
FD_E F/=+b

Table 5.2: Simple View Factors

View Factor Derived from

Fx-+l-i Fb-.+o

F E--+H Fb--+o

F E.-+B Fb--+i

Table 5.3: View Factors using the Addition Property
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View Factor Derived from

FH-_B FB_H

A Fa-,a
Fa- FE-,a

Table 5.4: View Factors using the Reciprocal Property

View Factor

FX.B

FB--, X

FB_G

FG_B

FC_H

FH_C

FD_G

FG-_ D

FH-_D

FD-+ H

FB_E

FB-_ F

FF-_B

FH_X

FH-,G

FG-_ H

FH_E

FH-_ F

FA_c

FC_A

FA-_ D

Derived from

Enclosure property ( Fx .c, FX _G, Fx .HandFx .A )

Reciprocal property

Enclosure property (Fx-,c, FB_H, FB_AandFB-.,x )

Reciprocal property

Symmetry ( FB_a)

Reciprocal property

Symmetry (Fc.H)

Reciprocal property

Symmetry (FF_B )

Symmetry (FB--,F)

Reciprocal property

Enclosure property ( FB-.I,A, FB...+H , FB_GandFB_E)

Reciprocal property

Reciprocal property

Enclosure property (FH_x, FH_C, FH-_B, FH-_HandFH_A)

Reciprocal property

Reciprocal property

Enclosure property (FH , A , FH..-rB , FH ,C , FH--+D, FH.-+ E, FH.--+ H FH-_,G )

Addition property (FA_B)

Reciprocal property

Symmetry (FA_c)

FD_A Symmetry (Fc-+a)

FE--,c Symmetry ( FE..-_D )

FC-_E Reciprocal property

FC--+F Symmetry ( FB_G)

FF_C Symmetry ( Fc_B )

Table 5.5: View Factors Using Previously Derived View Factors

87



Configuration (inner to outer) Utilizes

1 FD_H

2 FC.--_H

3 Enclosure, Reciprocal and Addition Property

4 Enclosure Property (Fc_x and Fc-..A)

5 Addition Property (Fc_H, FC_G and FC_F)

6 Reciprocal Property (Fa-.,,B, FG_c and Fc._,D)

7 Reciprocal Property (FG_B and FG--,,c)

8 Enclosure, Reciprocal and Addition Property

9 FB_G

10 FB-.+F

11 Addition Property (FB_H and FB_G)

12 FB_H

13 Reciprocal Property FH_B and FH_c)

14 (outer to outer) FH-+F

15 (outer to outer) Fl-l_a

16 (outer to outer) FH_H

Table 5.6: Table of Configurations from Figure 5.3

Configuration (inner to disk) Utilizes

1 Fv_A

2 Addition Property (Fc_A)

3 F_-_A

4 Addition Property (FB_A)

5 Fc-+E

6 Addition Property (Fc_E)

7 FD-.+E

8 Addition Property (ForE)

9 Fa--,A

10 Addition and Reciprocal Property (Ft--,,o)

11 FH-,,A

12' Fo_ t

13 FG-,E

14 Addition and Reciprocal Property (Fb.-.o)

15 FF_E

16 Fo-_b

Table 5.7: Table of Configurations from Figure 5.4
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Appendix B contains Mathematica scripts for computing all the view factors discussed

in this chapter. This allows the reader to see in detail the manipulations required to obtain

the view factors described.

89



5.3 Numerical Implications

Modeling radiative heat transfer has an important impact on the structure of the resulting

matrix (cf. Gartling [44]). We consider steady-state problems for the sake of brevity, al-

though the same analysis applies to transient problems. Each equation in a finite element

formulation represents a constraint on the unknowns of the system. Given a node ni in a

heat conduction problem (with no radiative heat transfer), the constraint on the temperature

at node ni will involve only those nodes, nj, in the mesh for which ni and nj appear in the

same element.

However, when we consider radiative heat transfer, it is possible for a nodal temperature

to be affected by a much larger set of other nodes. The constraint on node ni's temperature

will then contain terms involving nj if both nodes are part of the same element or connected

to radiative surface elements which can "see" each other (i.e., have non-zero view factors).

A B

21 22 23 24

• q F q F •

17 18 19
• AlL Ah
F I F I F

13 14 15
h 4L AlLF q F I F

9 10 11 12
• AlL Ah

_ F q F

5 6 7 8
• d L d LW I F _ F

1 2 3 4
/b dh AIL •

45 46 47 48

• IF IF 1

41 42 43 44
h dL AlL A
• I r I F

37 38 39 40
• Ak AIk• I r I F

33 34 35 36
Ib AIIL Ak• 'I F _I F

29 30 31 32
• dl L dllk• I F I F

25 26 27 28
L LL L m L LI

Figure 5.5: Example Mesh
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To illustrate this point, Figure 5.5 shows a sample mesh consisting of two separate bodies.

Figure 5.6a shows the tangent matrix structure when only heat conduction is considered.

Notice that there are never more than 9 non-zero terms for any given equation. On the other

hand, Figure 5.6b shows the structure of the tangent matrix when radiative heat transfer

occurs between edges A and B. Notice the "coupling" terms in both the upper right and

lower left quadrants resulting from the radiative heat transfer. Although we do not consider

the case of participating media, it is worth noting that the matrix is potentially fully dense

because of the interaction with additional nodes in the participating media.
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Figure 5.6: Matrix Structure (A • represents a non-zero entry)

Such coupling terms cause trouble for factorization methods because they inflate the

envelope of the tangent matrix, even with node renumbering, as can be seen in Figure 5.7.

For our example, the envelope for the matrix contains 792 elements with radiation while it

contains only 435 without radiation.
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Figure 5.7: Structure after renumbering

In the case of Krylov subspace methods, however, the addition of the coupling terms

increases only slightly the amount of work necessary to compute the needed matrix-vector

products. However, even though the cost of the matrix-vector product is not increased

significantly, in a problem with many coupling terms, if the condition number of the tangent

matrix increases, the convergence of the conjugate gradient algorithm is usually slower.

For the system shown in Figure 5.5, given a uniform conductivity of 1.0 and the following

boundary conditions:

7'1 = 1400K

T25 = 1500K
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we find that the condition numberof the tangent matrix is 162.54for conduction only, but

it jumps to 1219.3when radiation is included. Nevertheless,weshow later that the Krylov

subspacemethodsaremuchmoreefficientthan factorizationmethodsfor solvingour example

problem.
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Chapter 6

Applications

6.1 Introduction

One field which has long been of commercial interest and where considerable modeling work

has been done, is the study of solidification processes. Initially, the focus was to develop

accurate models of the solidification process, see Kurz and Fisher [45]. This work was then

followed by modeling of crystal growth in Bridgman furnaces [46] by Crochet et hi. [47, 48]

and Alexander et al. [49]. In addition, Atherton et al. [50] examined the effect of radiative

heat transfer on crystal growth. Finally, modeling of general phase changes using FEM has

been done by Bathe [51], Voller et al. [52-54] and Dantzig [55].

Given accurate simulation models of solidification and the ability to provide sensitivity in-

formation for these models, attention has recently turned to the optimization of solidification

processing. Work presented by Tortorelli et al. [37, 38] included optimization applications of

crystal growth and casting, respectively. For this work the commercial finite element sim-
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ulation codeFIDAP [39] and the optimization packageADS [14] wereused. In both cases,

most of the effort in setting up the optimization problem involved either modifying FIDAP

to calculate sensitivities, or passing objective information between FIDAP and ADS. In this

work, the authors had access to the source code for FIDAP. If a commercial code does not

compute the tangent matrix accurately, it would be impossible to even consider adapting the

commercial code to calculate analytical sensitivities in non-linear problems without access

to the source code.

To demonstrate the usefulness of optimization in solidification processing, we present a

realistic application. We consider the Bridgman growth of a semiconductor crystal using

NASA's Crystal Growth Furnace (CGF). The crystal is encased in a cartridge which is

heated inside the furnace, and solidification is accomplished by translating the cartridge

with respect to the furnace. The process can be optimized by adjusting the power input to

the heater coils to provide a desired temperature profile. This application involves radiative

heat transfer in a complex geometry, and the calculation of the solution alone is numerically

challenging.

6.2 Example Problem

6.2.1 Problem Description

Before demonstrating the crystal growth application, we first present a simpler problem

to introduce many of the concepts involved. Figure 6.1 shows a schematic of the physical

problem to be solved. The material to be solidified is represented by a 15cmx5cm slab. The
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unknowns in the problem are the temperatures in the slab. The furnace wall (shown on the

right in Figure 6.1) is represented as a set of boundary conditions. The furnace is divided

into seven zones and the temperature is considered to be piecewise uniform over each zone.

The temperature of each zone is also interpolated in time by four piecewise linear segments

(as shown in the upper right of Figure 6.1). The points defining these segments are the

design variables. The five control points in each zone and seven distinct zones, produce a

total of 35 design variables.

6.2.2 Objectives

The following are our goals for solidification process:

• Uniform axial interface velocity across the radial direction.

, Maintain a specified constant temperature gradient normal to the solidification inter-

face.

• Minimize radial temperature gradient.

We translate these goals into the desired temperature distributions along both the edge

and center line, as shown in Figure 6.2. For example, if the temperature distribution is

the same along the edge and centerline, then the radial temperature gradient is negligible.

Likewise, if the temperature distribution in Figure 6.2 can be achieved at the edge and

centerline, then we will satisfy the constraints on temperature gradient and velocity at the

solidification interface.
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Figure 6.2: Ideal Longitudinal Temperature Distributions
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Becausethe distributions shownin Figure 6.2representthe bestpossibleresult, wedefine

our objective function asthe root meansquareerror betweenthe simulation results and the

desireddistributions shownin Figure 6.2. The objective function is posedmathematically

as:

G(T(n, t, b), b) = I

_ (T(nj, -ti, b) ¢(nj,ti)) _
i=1 j=l

Nt * Nn '
(6.1)

where Nt is the number of time steps in the simulation, N, is the number of nodes along the

longitudinal edges, nj is the jth node on the longitudinal edges, ti is the time at the i th edge

and _'(nj, ti) is the the value of the function shown in Figure 6.2 at node nj and time ti.

6.2.3 Results

This optimization problem was solved using FEMLIB, and the DOT library [15]. The

sensitivities were computed by direct differentiation. Figure 6.3 shows the computed optimal

temperature distribution along the outer longitudinal edge (the edge closest to the furnace

wall) compared with the functions shown in Figure 6.2. It can be seen from this figure that

it is possible, by using optimization, to specify a desired result for a simulation and then

systematically and efficiently determine the optimal values for simulation parameters so as

to achieve this result. In cases with the potential for multiple optimal designs, additional

objectives can be placed on the system to distinguish between designs.
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Figure 6.3: Optimization Results
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6.3 Crystal Growth

We now consider a steady-state model of a crystal growth process and how optimization and

sensitivity analysis have been applied to improve the crystal growth process. The solidifica-

tion analysis is based on work by Watring [56] and Chait [57], using NASA's Crystal Growth

Furnace (CGF).

6.3.1 Apparatus

Hot Zone Adiabatic Zone Cold Zone

!t
i

Heater Coils V
Qhm Qhb_Q_b_Qcrn %

Furnace Cartridge

Figure 6.4: Furnace/Cartridge Apparatus

Figure 6.4 shows a schematic containing both the furnace and the cartridge. The CGF is

approximately 55cm long and has an outer radius of 12cm. The 2.56cm diameter cartridge

is made of molybdenum and fits inside the 3cm diameter furnace bore. The aspect ratio of

the furnace has been altered in Figure 6.4 to distinguish the different zones.

6.3.1.1 Cartridge
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Figure 6.5: Cartridge Schematic

The cartridge encloses an ampoule containing Gallium Arsenide (GaAs), from which the

crystal is to be grown, and various container materials. The exterior of the cartridge is

made from layers of molybdenum, quartz and pyrolytic boron nitride (PBN). Inside these

protective layers is the GaAs ampoule, bracketed by graphite and Boron Nitride (BN) to

plug the ends of the cartridge (see Figure 6.5). The properties for the materials used in

our model can be found in Appendix C. We model both the furnace and the cartridge, and

the models can be used either together or independently. The simulations use axisymmetric

transformations to take advantage of the cylindrical symmetry.

A schematic of the FEM model for the cartridge can be found in Figure 6.6. In addition,

because of the expected steep temperature gradients near the solidification interface, the

mesh has been refined in the area of solidification to assure accuracy.

6.3.1.2 Furnace

The furnace is constructed from various ceramic insulating materials and contains three

separate heating zones. The "hot zone" is the section of the furnace which operates above
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Cold Zone

Figure 6.6: Cartridge Mesh

the melting temperature of GaAs, while the "cold zone" operates below this temperature.

Between these two zones is an "adiabatic zone" where radial heat transfer between the

cartridge and the furnace is kept to a minimum. The axial temperature gradient in the

adiabatic zone is very steep because within this narrow zone the temperature must go from

hot to cold. During this transition within the adiabatic zone, the gallium-arsenide solidifies.

Figure 6.7 shows a schematic diagram of the furnace. The inside of the furnace bore is

composed of zirconia in the adiabatic zone and beryllia in hot and cold zones. The furnace

bore is then surrounded by a layer of zirconia and a final layer of Min-K TE-1800. Figure

6.8 shows the finite element mesh used for the furnace.

Radiative heat transfer occurs between the inside of the furnace bore and the outside

of the cartridge. To compute the heat transfer, it is necessary to calculate view factors as

described in Section 5. The exterior of the furnace is surrounded by water filled cooling

pipes, hence the outer furnace surface is covered with surface elements to model the forced

convection. The heater coils are modeled as volumetric heat sources along the inside of the

furnace bore. Finally, radiative heat transfer is included for the alumina at the end of the
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Figure 6.7: Furnace Schematic

Figure 6.8: Furnace Mesh
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hot zone because it is significantly hotter than the ambient. There are no essential boundary

conditions.
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6.3.2 Objective

When growing crystals, the two main process parameters we wish to control are, the growth

rate and the temperature gradient in the liquid at the interface. The GaAs crystals are grown

at rate of around 1 #m per second and with a temperature gradient at the solidification

interface between 1 and 10 K/mm [45]. The crystal satisfies the Stefan condition [45] at the

interface:

k_VTs, fi - ktVTt, fi = pLf V . fi (6.2)

where ks is the conductivity of the isotropic solid, VTs is the temperature gradient in the

solid, kt is the conductivity of the isotropic liquid, VTt is the temperature gradient in the

liquid, Lf is the latent heat of fusion, p is the density, V is the velocity of the solidification

front and fi is the normal to the solidification interface. Dividing by kl_TTt • fi yields:

k, VT, • fi pLfV. fi
1 = (6.3)

klVTt . fi klVTi . fl

Using a growth velocity of 1 #m/sec, temperature gradients from 1-10 K/mm and the ma-

terial properties given in the appendix, the right-hand side of Equation 6.3 evaluates to

between 55.4 * 10 -3 and 5.54 • 10 -3. This indicates that the contribution of latent heat evo-

lution (i.e., interface motion) is negligible in comparison to heat conduction. We therefore

treat the problem as if it were steady-state.
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We compute the Rayleigh Number for this problem as follows:

pCpgPflAT (5.71,103 ,__)2 (2840 k-_gK)( 10-3 _)(.3 m) 3 (10 -s _)(400 K)

#k (1.7.103 m,)(18 h-_K)

= .326

(6.4)

Because the Rayleigh Number is so low, we can neglect modeling of bouyancy driven con-

vection in the liquid. Finally, we compute the Peclet Number:

pCpVl (5.71.103 ,,,2)(2840 kg-_g)( 10-6 _)(.3 m)
- = .270 (6.5)

k (18-_g)

Since the Peclet Number is so low, we can also ignore any forced convection that occurs in

the liquid.
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As in the previousexample,weposea "desirable" temperature distribution for the am-

poule,shownin Figures6.9-6.11.Theindependentvariablein thesefiguresis the longitudinal

position of the temperature profile. There areseveralinteresting characteristicsto this ob-

jective function. First, we attempt to specify the temperature distribution in the ampoule

only, avoiding the problem of over-constrainingthe system.Using equationEquation (6.3),

andneglectingthe heatevolution term, wehavethe following expressionfor the temperature

gradient in the solid:

k,

VT,. fi = _VTt-fi (6.6)

Using this expression we can construct the desired temperature distribution near the interface

(see Figures 6.9-6.11). Lastly, we compute our objective by taking the differences between our

desired temperature distribution and the actual ampoule temperatures both at the surface

of the ampoule and at its center. Forcing the surface and center of the ampoule to the same

temperature distribution leads to a flat interface.
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6.3.3 Results

For all the results presented in the section, the DOT optimization package [15] was used.

In addition, the objective function gradients were computed using the adjoint method as

discussed in Section 2.4. Table 6.12 shows various statistics for the optimization of the

different objective functions. In addition, Figures 6.13-6.15 compare the desired results with

those obtained through optimization. In each of the figures below there are two parts. Part

a will show a comparison between the ampoule wall temperature distribution and our ideal

temperature distribution. Likewise, part b will show a comparison between the centerline

temperature distribution and our ideal temperature distribution.

Interface

Temperature Function Gradient Initial Final

Gradient Evaluations Evaluations Objective Objective

1,000K/m 88 16 714,089 101

5,000K/m 51 9 6.593 * 10 s 1088

10,000K/m 44 7 6.937 * 106 11940

Figure 6.12: Optimization Statistics

As we can see, the steeper the temperature gradient becomes, the more difficultly we

have matching our ideal temperature distribution. In addition, note that the temperature

distributions on the ampoule wall and at the centerline appear to be offset in the longitudinal

direction. This offset is due to radial heat losses in the adiabatic zone. Any heat loss in

aT in thethe radial direction translates into a non-zero temperature gradient component, _-T,

radial direction.

We take this opportunity to compare the various linear solution solving algorithms dis-

cussed in Sections 1.3.2 and 2.5. Many benchmarks exist which compare the various tech-
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niquesdiscussed,but the structural propertiesof the tangent matrix for the present radiative

"heat transfer problem provide an interesting complication. Using the LU decomposition al-

gorithm from the Yale Sparse Matrix Package (YSMP) [58] and the biconjugate gradient

algorithm (BiCG-STAB) with various preconditioners from SparseL±b++ [59] our best re-

sults came from using an ILU preconditioned biconjugate gradient algorithm.

Solution Scheme Single System (avg) Factor/Precondition Additional RHS (avg)

YSMP 105.7 seconds 104.486 seconds 1.11 seconds

BiCG-STAB w/DP 121.6 seconds .77 seconds 120.83 seconds

BiCG-STAB w/ILUP 28.7 seconds .621 seconds 28.1 seconds

Figure 6.16: Linear Solver Comparison

Table 6.16 shows how the various techniques compare for our CGF problem. The first

column indicates the algorithm used, where DP stands for diagonal preconditioning and

ILUP stands for incomplete LU preconditioning. The next three columns contain CPU

times for the solving of a single linear system. The second and third columns are broken

down into the time required to factor or precondition the matrix, which is necessary once

for each matrix, and the cost of solving each right hand side, respectively.

The results shown in Figure 6.16 have important ramifications for senstivitivity analysis.

For example using the adjoint method, where a single right hand side must be solved, the

BiCG-STAB algorithm with ILU preconditioning is over three times faster than YSMP.

However, using direct differentiation with three (or more) design variables, YSMP would be

preferred because it would take 109 seconds (105.7-1-1.11.3) versus 113 seconds (28.7+28.1.3)

for BiCG-STAB with ILU preconditioning.
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Chapter 7

Conclusion and Future Work

There were three principle components to the work presented. The first was a formalized

approach to integrate optimization, sensitivity information and analysis from a software

point of view. Next, we discussed the implications of radiation view factors and introduced

some closed form solutions for computing view factors of co-axial axisymmetric cylinders.

Finally we combined these two components to solve two example applications.

The work done in integrating software has two components. First, we define a protocol

for communication between optimization and simulation packages. Next, we formalize many

of the calculations which take place during analysis to accommodate computing sensitivity

information. Potential future work for the former would be to develop a set of tools, using

our protocol, to allow the user to specify a variety of objectives. These tools would then be

able to provide the implicit derivatives of the user objectives (and constraints) with respect

to solution and design. The development of graphical user interfaces (GUIs) would make it

easier for users to create optimization problem specifications and visualize their results.
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Future work related to formalizing the analysis and sensitivity calculations might focus on

refining the approach for more diverse systems. In addition, there are many useful algorithms

which could be added to the framework. For example, the ability to perform eigenmode

analysis would be very useful. The more capabilities added to the system, the larger the

potential pool of applications becomes. Another useful component to our simulation system

would be pre and post-processing capabilities.

The radiation modeling could also be refined to include more complex formulations. For

example, we assume no reflection or transmittance of radiation in our model. Research into

computing sensitivities in the presence of reflection and transmittance would be the next

logical step.

Finally, the applications themselves could also be refined. In generating our CGF model,

we made some assumptions in an effort to simplify our model. One result of this is that

the power consumption in our furnace is substantially higher than in the actual furnace

(1500-1700W vs. 800W). Much of this is probably the result of simplifications made to the

model and a more complete model would be of benefit. In addition, the actual CGF can be

assembled with a heat extraction plate which makes it easier to obtain 1OK/ram gradients

in the furnace. The addition of a heat extraction plate to our model would probably allow

us to get closer to a lOK/mm gradient at the interface.

Overall, this work represents a successful mixing of the components we have discussed.

Additional research can build upon this work to gain a more complete understanding of the

concepts involved.
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Appendix A

Class Definitions

A.1 Optimizer and OptUpdate Class Definitions

Figure A.1 is the abstract class definition for all optimization software packages and corre-

sponds to the function description presented in Figure 4.7. Figure A.2 essentially implements

a form of closure which can be called after every design iteration.
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class Optimizer

{

protected:

Optimizable &opt;

SimpleSet<OptUpdate *> updates;

void DoUpdates();

public:

Optimizer(Optimizable &o);

void Add(OptUpdate *ou) { updates+=ou; }

enum Status { Done, NotDone };

virtual Status Iterate(int hum, int &suc)= O;

virtual Status Optimize();

virtual Status Optimize(int max);

virtual -Optimizer() { }

};

Figure A.I: Optimizer Class Definition

class OptUpdate

{

public:

virtual void update(Optimizer *) = O;

};

Figure A.2: OptUpdate Class Definition
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A.2 Optimizable Class Definitions

Figure A.3 is the class definition for the problem specification. The functional behavior is

like that described in 4.9.

Class Optimizable

{

private:

Optimizable(const Optimizable&);

Optimizable &operator=(const Optimizablea);

protected:

Optimizable();

public:

virtual -Dptimizable() { }

};

// Optimizable Interface

virtual DesignSpace &Space() = O;

virtual const Function &Cost(int grad=l) = O;

virtual const FCSet _Constraints(int grad=l) = O;

Figure A.3: Optimizable
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A.3 Simulator and Result Class Definitions

class Simulator

{

protected:

Design *design;

public:

enum Status { Done, NotDone };

Simulator(Design *d) : design(d) { }

Design *GetDesign() { return design; }

};

vmrtual void

virtual double

virtual Status

virtual Status

virtual Result*

// Simulator interface

Init() = O;

Time() const = O;

Solve_Init(int sense) = O;

TimeStep(int sense, double tmesh) = O;

Result(int sol) = O;

virtual -Simulator() { }

Figure A.4: Simulator
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class Result

{

protected:

Simulator *sim;

public:

Result(Simulator *);

virtual -Result() { }

II
};

virtual int

virtual int

virtual int

virtual int

vlrtual double

virtual double

virtual void

virtual void

virtual void

NumNodes() = 0;

NumEq() = 0;

NumDOFS(int node) = 0;

EqNum(int node, int dof) = O;

GetSol(int eq) = 0;

GetDUDB(int eq, int bn) = O;

GetSol(double *);

GetDUDB(double *, int bn);

SetSol(int eq, double val) = O;

Figure A.5: Result
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A.4 Objective Class Definition

class Objective

{

public:

enum Status { Done, NotDone };

static inline int Equal(double dl, double d2, double eps=le-9);

protected:

Simulator &sim;

Design &des;

public:

Objective(Simulator &, Design k);

virtual "Objective() { }

// Objective interface

virtual void

virtual void

virtual Status

virtual double

virtual int

virtual void

Init() = O;

TimeStep(int) = O;

GetStatus() = O;

NextTime() = O;

NumCon() = O;

Results(CacheFunction& cost, const SCFSet& cset) = O;

};

Figure A.6: Result
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Appendix B

Mathematica View Factor Code

(* Given a two concentric cylinders with longitudinal length H, inner

radius Ri, outer radius Ro, and annular ends of radius Rt and Rb

Taken from : "Analytic angle factors from the radiant interchange

among the surface elements of two concentric cylinders"

Directed to my attention by Robert McDavid.

*)

(* View factor from outer cylinder to itself *)

Fooauxl[Xo_,Xi_] := If[Xo==Xi, 0,

If [Xi::0, 1/ (2*Xo) * ( l+2*Xo-Sqrt [( l+4*Xo _ 2) ] ),

I/(Pi*Xo)* (Pi* (Xo-Xi)+ArcCos [Xi/Xo]

-Sqrt [(1+4*Xo" 2)]*ArcTan [Sqrt [(I+4*Xo _2) (Xo"2-Xi" 2)]/Xi]

+2*Xi*ArcTan [2*Sqrt [Xo^2-Xi'2] ])]]

Fooaux2 [Xo_, Xi_] := i/(Pi*Xo)* (Pi* (Xo-Xi) +ArcCos [Xi/Xo]

-Sqrt [(I+4*Xo" 2)]*ArcTan [Sqrt [(1+4.Xo" 2) (Xo" 2-X i^2)]IXi]

+2*Xi*ArcTan [2*Sqrt [Xo"2-Xi" 2]])

Foo [Ro_,Ri_,Rt_,Rb_,H_] = Block[{Xo=RolH, Xi=Ri/H}, Fooauxl[Xo, Xi]]

(* View factor from outer cylinder to inner cylinder *)
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Foiauxl[Xo_, Xi_] :=

If[Xo==Xi, i,

If[Xi==O, O,

I/(Pi*Xo) * (.5* (Xo" 2-Xi "2-1) *ArcCos [Xi/Xo] +Pi*Xi

- (Pi/2) * (Xo" 2-Xi'2) -2*Xi*ArcTan [Sqrt [Xo'2-Xi'2] ]

+Sqrt [( (I+ (Xo+Xi) "2) * (I+ (Xo-Xi) "2) )3

•ArcTan [Sqrt [( (I+ (Xo+Xi) "2) * (Xo-Xi)) / ((i+ (Xo-Xi) "2)* (Xo+Xi))] ] )] ]

Foiaux2[Xo_, Xi_] := ll(Pi*Xo)*(.5*(Xo'2-Xi'2-1)*ArcCos[Xi/Xo]+Pi,Xi

-(Pi/2)*(Xo'2-Xi'2)-R,Xi,ArcTan[Sqrt[Xo-2-Xi-2]]

+Sqrt[((l+(Xo+Xi)'2)*(l+(Xo-Xi)_2))]

*ArcTan[Sqrt[((l+(Xo+Xi)'2)*(Xo-Xi))/((l+(Xo-Xi)'2).(Xo+Xi))]])

Foi [Ro_,Ri_,Rt_,Rb_,H_] := Block[{Xo=RolH, Xi=RilH}, Foiauxl [Xo,Xi]]

(* View factor from inner cylinder to outer cylinder *)

Fio[Ro_,Ri_,Rt_,Rb_,H_] := Block[{Ai=2*Pi*Ri*H, Ao=2*Pi*Ro*H},

(Foi[Ro,Ri,Rt,Rb,H]*Ao)/Ai]

(* View factor from top annulus to outer cylinder *)

Ft oauxl [Xt_, Xo_, Xi_, Yto_] :=

If [Xi==O, (i/(2*Xt'2) )* (Sqrt [(l+(Xt+Xo) "2)*(I+ (Xt-Xo) "2)] -l-Xo'2+Xt'2),

If[Xt==Xi, O,

If [Xt==Xo,

I/(Pi* (Xt "2-Xi "2) )* (.5* (Xo" 2-Xi'2) * (Pi-ArcCos [Xi/Xo] )

-2*Xi* (ArcTan [Sqrt [Xo'2-Xi ^2] +Sqrt [Xt'2-Xi'2] ]

-ArcTan [Sqrt [Xo ^2-Xi'2] ] )-. 5*ArcCos [XilXt]

+Sqrt [(i+ (Xo+Xt) "2) * (I+ (Xo-Xt) "2) ]

•ArcTan [Sqrt [((I+ (Xo+Xt) "2) * (Yt o" 2- (Xo-Xt) "2) )/

((I+(Xo-Xt)-2)•((Xo+xt)-2-zto"2))J]

-Sqrt [(t+ (Xo+Xi) "2) * (I+ (Xo-Xi) ^2)]

•ArcTan [Sqrt [((i+ (Xo+Xi) "2) * (Xo-Xi)) /

((I+ (Xo-Xi) "2) * (Xo+Xi))]] ),

i/(Pi* (Xt "2-Xi'2) )* (.5* (Xo" 2-Xi "2) * (Pi-ArcCo s [Xi/Xo] )

-2*Xi* (ArcTan [Sqrt [Xo ^2-Xi" 23 +Sqrt [Xt" 2-Xi'2] ]

-ArcTan [Sqrt [Xo" 2-Xi-2] ] )-. 5*ArcCo s [Xi/Xt]

+Sqrt [(I+ (Xo+Xt) "2) * (I+ (Xo-Xt) "2) ]

•ArcTan [Sqrt [((I+ (Xo+Xt) "2) * (Yt o" 2- (Xo-Xt) "2) )/

((I+ (Xo-Xt) "2) * ((Xo+Xt) "2-Yt o" 2) )] ]

-Sqrt [(i+ (Xo+Xi) "2)* (1+ (Xo-Xi) "2)]

•Ar cTan [Sqrt [((I+ (Xo+Xi) ^2) * (Xo-Xi)) / ((I+ (Xo-Xi) "2) * (Xo+X i) )]]

- (Xo'2-Xt ^2) *ArcTan [((Xo+Xt) / (Xo-Xt))

•Sqrt [(Yto'2- (Xo-Xt) "2) / ((Xo+Xt) ^2-Yto-2)] ] )]] ]
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Ftocasel [Xt_ ,Xo_ ,Xi_ ,Yto_] :=

(1/ (2*Xt "2) )* (Sqrt [(i+ (Xt +Xo) "2) * (I+ (Xt-X o) ^2) ]- l-Xo" 2+Xt ^2)

Ftocase2[Xt_,Xo_,Xi_,Yto_] := II(Pi* (Xt'2-Xi'2))*

(.5* (Xo'2-Xi'2)* (Pi-ArcCos [Xi/Xo] )

-2*Xi* (ArcTan [Sqrt [Xo'2-Xi" 2] +Sqrt [Xt ^2-Xi'2] ]

-ArcTan [Sqrt [Xo" 2-Xi "2] ] )-. 5*ArcCos [Xi/Xt]

+Sqrt [(I+ (Xo+Xt) "2)* (I+ (Xo-Xt) "2)3

*ArcTan [Sqrt [( (i+ (Xo+Xt) ^2) * (Yto" 2- (Xo-Xt) "2) )/

((I+ (Xo-Xt) "2) * ((Xo+Xt) "2-Zt o" 2) )]]

-Sqrt [(i+ (Xo+Xi) "2) * (I+ (Xo-Xi) "2)]

*ArcTan [Sqrt [( (i+ (Xo+Xi) "2) * (Xo-Xi)) /

( (i+ (Xo-Xi) "2) * (Xo+Xi))]] )

Ftocase3[Xt_,Xo_,Xi_,Yto_] := I/(Pi*(Xt'2-Xi'2))*

(.5* (Xo" 2-Xi'2)* (Pi-ArcCos [XilXo] )

-2*Xi* (ArcTan [Sqrt [Xo" 2-Xi" 2] +Sqrt [Xt "2-Xi "2] ]

-ArcTan [Sqrt [Xo" 2-Xi'2] ] )-. 5*ArcCos [Xi/Xt]

+Sqrt [(1+ (Xo+Xt) "2)* (I+ (Xo-Xt) "2) ]

•ArcTan [Sqrt [((i+ (Xo+Xt) "2) * (Yt o" 2- (Xo-Xt) "2) )/

( (l+ (Xo-Xt) "2)*((Xo+Xt) "2-Yt o ^ 2) )]3

-Sqrt [(I+ (Xo+Xi) "2)* (I+ (Xo-Xi) "2)]

•ArcTan [Sqrt [((I+ (Xo+Xi) "2) * (Xo-Xi)) / ((i+ (Xo-Xi) "2) * (Xo+Xi)) ]]

- (Xo" 2-Xt" 2) *ArcTan [((Xo+Xt) / (Xo-Xt))

•Sqrt [(Yt o" 2- (Xo-Xt) "2) / ((Xo+Xt) "2-Yt o" 2) ]] )

Ftoaux2 [Xt_, Xo_, Xi_, Yt o_] :=

ii (Pi* (Xt'2-Xi'2)) * (.5* (Xo ^2-Xi'2) * (Pi-ArcCo s [XilXo] )

- 2*X i* (ArcTan [Sqrt [Xo" 2-X i" 2] +Sqrt [Xt ^2-X i"2] ]

-ArcTan [Sqrt [Xo'2-Xi'2] ])-. 5*ArcCos [Xi/Xt] •

+Sqrt [(1+ (Xo+Xt) "2) * (1+ (Xo-Xt) "2) ]

•ArcTan [Sqrt [((i+ (Xo+Xt) "2) * (Yto" 2- (Xo-Xt) "2) )/

((i+ (Xo-Xt) "2) * ((Xo+Xt) "2-Zt o" 2) )] ]

-Sqrt [(I+ (Xo+Xi) "2)* (I+ (Xo-Xi) "2) ]

• ArcTan [Sqrt [( (I+ (Xo+Xi) "2)* (Xo-Xi)) / ( (I+ (Xo-Xi) "2), (Xo+Xi)) ]]

- (Xo'2-Xt'2)*ArcTan [((Xo+Xt) / (Xo-Xt))

•Sqrt [(Yt o" 2- (Xo-Xt) ^2) / ((Xo+Xt) "2-Yt o" 2) ]] )

Fto[Ro_,Ri_,Rt_,Rb_,H_] := Block[{Xt=Rt/H, Xo=RolH, Xi=RilH,

Yt o=Sqrt [Xo" 2-Xi "2] +Sqrt [Xt "2-Xi" 2] }, Ft o aux I [Xt, Xo, Xi, Yt o] ]

(* View factor from outer cylinder to top annulus *)
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Fot [Ro_,Ri_ ,Rt_,Rb_ ,H_] := Block [{Ao=2*Pi*Ro*H, At=Pi*Rt'2-Pi*Ri'2},
(Fto [Ro,Ri, Rt, Rb,H]*At)/Ao]

(* Symmetrybetween top and bottom *)
Fbo[Ro_,Ri_ ,Rt_ ,Rb_,H_] := Fro [Ro,Ri ,Rb,Rt ,H]

(* View factor from outer cylinder to bottom annulus *)

Fob[Ro_,Ri_,Rt_,Rb_,H_] := Block[{Ab,Ao},

Ab = Pi*Rb'2-Pi*Ri'2; Ao = 2*Pi*Ro*H;

(Fbo[Ro,Ri,Rt,Rb,H3*Ab)/Ao]

(* View factor from top annulus to bottom annulus *)

Ftbauxl [Xt_ ,Xb_ ,Xi_,Ytb_] :=

If[Xb==Xi, O,

If [Xi==O, (I/(2*Xt'2))*(l+Xt'2+Xb^2-Sqrt [(l+(Xt+Xb)'2)*(l+(Xt-Xb)'2)] ),

i/(Pi* (Xt ^2-Xi" 2) )* (.5* (Xt" 2-Xi'2) *ArcCos [Xi/Xb]

+. 5* (Xb" 2-Xi "2) *ArcCos [Xi/Xt]

+2*Xi* (ArcTan [Sqrt [Xt'2-Xi" 2] +Sqrt [Xb" 2-Xi'2] ]

-ArcTan [Sqrt [Xt" 2-X i" 2] ]-ArcTan [Sqrt [Xb "2-Xi "2] ] )

-Sqrt [(i÷ (Xt +Xb) "2) * (I+ (Xt-Xb) "2) ]

•ArcTan [Sqrt [((I+ (Xt +Xb) "2) * (Ytb" 2- (Xt-Xb) ^2) )/

((I+ (Xt-Xb) "2) * ((Xt +Xb) "2-Yt b" 2) )]]

÷Sqrt [(I+ (Xt +Xi) "2) * (I+ (Xt-Xi) "2) ]

•ArcTan [Sqrt [((I+ (Xt +Xi) "2) * (Xt-Xi)) /

((i+(xt-xi)-2)•(xt+xi))]]

+Sqrt [(I+ (Xb+Xi) "2)* (I+ (Xb-Xi) "2)]

•ArcTan [Sqrt [( (1+ (Xb+Xi) ^2) * (Xb-X i) )/ ((I+ (Xb-Xi) "2) * (Xb+Xi)) 3] )] ]

Ftbaux2 [Xt_ ,Xb_ ,Xi_ ,Ytb_] := I/(Pi*(Xt ^2-Xi'2) )* (.5*(Xt'2-Xi'2) *ArcCos [XilXb]

+. 5* (Xb" 2-Xi "2) *ArcCos [XilXt]

+2*Xi* (ArcTan [Sqrt [Xt" 2-Xi" 2] +Sqrt [Xb" 2-Xi" 2] ]

-ArcTan [Sqrt [Xt" 2-Xi -2] 3 -Ar cTan [Sqrt [Xb- 2-Xi" 2] ] )

-Sqrt [(i+ (Xt+Xb) "2) * (I+ (Xt-Xb) "2)3

•ArcTan [Sqrt [((i+ (Xt +Xb) "2) * (Ytb" 2-(Xt-Xb) "2) )/

( (I+ (Xt-Xb) "2) * ( (Xt +Xb) "2-Yt b" 2) )]]

+Sqrt [(I+ (Xt+Xi) "2)* (i+ (Xt-Xi) "2)]

•ArcTan [Sqrt [((I+ (Xt +Xi) "2) * (Xt-Xi))/

( (i+ (Xt-Xi) "2) * (Xt +Xi) )]]

+Sqrt [(I+ (Xb+Xi) "2) * (I+ (Xb-Xi) "2)]

•ArcTan [Sqrt [((i+ (Xb+Xi) "2) * (Xb-Xi)) / ((i+ (Xb-Xi) "2) * (Xb+Xi)) ] ] )

Ftb [Ro_,Ri_,Rt_,Rb_,H_] := Block [{Xt=Rt/H, Xb=RblH, Xi=Ri/H,

Ytb=Sqrt [Xt" 2-Xi "23 +Sqrt [Xb" 2-Xi" 23 }, Ftbauxl [Xt, Xb, Xi, Ytb] ]
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(* View factor from bottom annulus to top annulus *)

Fbt [Ro_ ,Ri_ ,Rt_ ,Rb_ ,H_] := Block [{At=Pi*Rt'2-Pi*Ri^2, Ab=Pi*Rb^2-Pi,Ri'2},

(Ftb [Ro, Ri, Rt, Rb,H] *At)/Ab]

(* View factor from top annulus to inner cylinder *)

Fti[Ro_,Ri_,Rt_,Rb_,H_] := 1-Fto[Ro,Ri,Rt,Rb,H]-Ftb[Ro,Ri,Rt,Rb,H]

(* View factor from inner cylinder to top annulus *)

Fint[Ro_,Ri_,Rt_,Rb_,H_] := Block[{Ai=2*Pi*Ri*H, At=Pi*Rt'2-Pi*Ri'2},

(Fti[Ro,Ri,Rt,Rb,H]*At)/Ai]

(* Symmetry between top and bottom *)

Fbi[Ro_,Ri_,Rt,Rb_,H_] := Fti[Ro,Ri,Rb,Rt,H]

(* View factor from outer cylinder to bottom annulus *)

Fib[Ro_,Ri_,Rt_,Rb_,H_] := Block[{Ab=Pi*Rb'2-Pi*Ri'2, Ai=2*Pi*Ri*H},

(Fbi[Ro,Ri,Rt,Rb,H]*Ab)/Ai]

(* Additional derivations by me *)

(* These functions require the ones from the paper by Blockman *)

<<paper.m

(* Given a cylinder labeled as follows ...

a => top annular disk

b, c, d => inner cylinder segments (top to bottom)

e => bottom annular disk

f, g, h => outer cylinder segments (bottom to top)

We have the following relations...

*)

(*
..... Section 1

The following section contains the list of explicit view factors we

already know from paper.m

*)

Fba[Ri_,Ro_,Hb_,Hc_,Hd_] := Fint[Ro,Ri,Ro,Ro,Hb]

Fbh[Ri ,Ro_, Hb ,Hc_,Hd_] := Fio[Ro,Ri,Ro,Ro,Hb]
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Fby[Ri_,Ro_,Hb_,Hc_,Hd_] := Fib[Ro,Ri,Ro,Ro,Hb]

Fcy [Ri_

Fcg [Ri_

Fcx [Ri_

Fab [Ri_

Fgc [Ri_

Fdx [Ri_

Fdf [Ri_

Ffd [Ri_

Fde [Ri_

Fxc [Ri_

Fcx[Ri_

Fxg [Ri_

Fgx [Ri_

,Ro_ ,Hb_ ,Hc_ ,Hd_]

,Ro_ ,Hb_ ,Hc_ ,Hd_]

,Ro_,Hb_,Hc_,Hd_]

,Ro_ ,Hb_,Hc_ ,Hd_]

,Ro_ ,Hb_ ,Hc_ ,Hd_]

,Ro_,Hb_,Hc_,Hd_]

,Ro_,Hb_,Hc_,Hd_]

,Ro_,Hb_,Hc_,Hd_]

,Ro_,Hb_,Hc_,Hd_]

,Ro_,Hb_,Hc_,Hd_]

,Ro_,Hb_,Hc_,Hd_]

,Ro_,Hb_,Hc_,Hd_]

,Ro_,Hb_,Hc_,Hd_]

Fxa[Ri_,Ro_,Hb_,Hc_,Hd_]

Fah [Ri_,

Fha [Ri_,

Fef [Ri_,

Ffe [Ri_,

Fag [Ri_,

Feg [Ri_,

Fhy[Ri_,

Fyh [Ri_,

Fhh[Ri_,

Ro_,Hb_,Hc_,Hd_]

Ro_,Hb_,Hc_,Hd_]

Ro_,Hb_,Hc_,Hd_]

Ro_,Hb_,Hc_,Hd_]

Ro_,Hb_,Hc_,Hd_]

Ro_,Hb_,Hc_,Hd_]

Ro_,Hb_,Hc_,Hd_]

Ro_,Hb_,Hc_,Hd_]

Ro_, Hb_, Hc_, Hd_]

Fgg[Ri_,Ro_,Hb_,Hc_,Hd_]

Fff[Ri_,Ro_,Hb_,Hc_,Hd_]

Fed[Ri_,Ro_,Hb_,Hc_,Hd_]

Fde[Ri_,Ro_,Hb_,Hc_,Hd_]

(_

Section 2

:= Fint[Ro,Ri,Ro,Ro,Hc]

:= Fio[Ro,Ri,Ro,Ro,Hc]

:= Fib[Ro,Ri,Ro,Ro,Hc]

:= Fti[Ro,Ri,Ro,Ro,Hb]

:= Foi[Ro,Ri,Ro,Ro,Hc]

:= Fint [Ro,Ri,Ro,Ro, Hd]

:= Fio [Ro,Ri, Ro, Ro,Hd]

:= Foi [Ro,Ri ,Ro,Ro, Hd]

:= Fib [Ro ,Ri,Ro ,Ro,Hd]

:= Fbi[Ro,Ri,Ro,Ro,Hc]

:= Fib[Ro,Ri,Ro,Ro,Hc]

:= Fbo[Ro,Ri,Ro,Ro,Hc]

:= Fob[Ro,Ri,Ro,Ro,Hc]

:= Fbt[Ro,Ri,Ro,Ro,Hb+Hc]

:= Fto[Ro,Ri,Ro,Ro,Hb]

:= Fot[Ro,Ri,Ro,Ro,Hb]

:= Fbo[Ro,Ri,Ro,Ro,Hd]

:= Fob[Ro,Ri,Ro,Ro,Hd]

:= Fto[Ro,Ri,Ro,Ro,Hb+Hc]-Fto[Ro,Ri,Ro,Ro,Hb]

:= Fbo[Ro,Ri,Ro,Ro,Hc+Hd]-Fbo[Ro,Ri,Ro,Ro,Hd]

:= Fob[Ro,Ri,Ro,Ro,Hb]

:= Fbo [Ro,Ri,Ro,Ro,Hb]

:= Foo[Ro

:= Foo[Ro

:= Foo[Ro

,Ri,Ro,Ro,Hb]

,Ri,Ro,Ro,Hc]

,Ri,Ro,Ro,Hd]

:= Fbi[Ro,Ri,Ro,Ro,Hd]

:= Fib[Ro,Ri,Ro,Ro,Hd]
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This section contains functions related to composite surfaces.

*)

Fxh [Ri_, Ro_, Hb_, Hc_, Hd_] := Fbo [Ro,Ri, Ro, Ro, Hb+Hc] -Fbo [Ro,Ri, Ro, Ro, Hc]

Feh[Ri_,Ro_,Hb_,Hc_,Hd_] :=

Fbo[Ro,Ri,Ro,Ro,Hb+Hc+Hd]-Fbo[Ro,Ri,Ro,Ro,Hc+Hd]

Feb[Ri_,Ro_,Hb_,Hc_,Hd_] :=

Fbi[Ro,Ri,Ro,Ro,Hb+Hc+Hd]-Fbi[Ro,Ri,Ro,Ro,Hc+Hd]

(*

Section 3

These functions come from reversing existing relations.

*)

Fhb[Ri_,Ro_,Hb_,Hc_,Hd_] := Block[{Ah=2*Pi*Ro*Hb,Ab=2*Pi*Ri*Hb},

Ab*Fbh[Ri,Ro,Hb,Hc,Hd]/Ah]

Fga[Ri_,Ro_,Hb_,Hc_,Hd_] := Block[{Ag=2,Pi,Ro,Hc,Aa=Pi,Ro-2-Pi,Ri-2},

Aa*Fag[Ri,Ro,Hb,Hc,Hd]/Ag]

Fge[Ri_,Ro_,Hb_,Hc_,Hd_] := Block[{Ag=2*Pi*Ro*Hc,Ae=Pi*Ro'2-Pi,Ri^2},

Ae*Feg[Ri,Ro,Hb,Hc,Hd]/Ag]

(*

Section 4

We shouldn't see calls to any of the functions in paper.m from now on

,)

Fxb[Ri_,Ro_,Hb_,Hc_,Hd_] := l-(Fxc[Ri, Ro, Hb, Hc, Hd]+

Fxg[Ri, Ro, Hb, Hc, Hd]+Fxh[Ri, Ro, Hb, Hc, Hd]+Fxa[Ri, Ro, Hb, Hc, Hd])

Fbx [Ri_, Ro_, Hb_, Hc_, Hd_] := Block [{Ax=Pi*Ro _2-Pi*Ri^ 2,Ab=2*Pi*Ri*Hb},

Ax*Fxb [Ri ,Ro ,Hb,Hc,Hd]/Ab]

Fbg[Ri_,Ro_,Hb_,Hc_,Hd_] := Block[{Ax=Pi*Ro^2-Pi*Ri'2,Ab=2*Pi*Ri*Hb},

i-(Fbh[Ri,Ro,Hb,Hc,Hd]+Fba[Ri,Ro,Hb,Hc,Hd]+Fbx[Ri,Ro,Hb,Hc,Hd])]

Fgb[Ri_,Ro_,Hb_,Hc_,Hd_] := Block[{Ag=2*Pi*Ro*Hc, Ab=2*Pi*Ri*Hb},

Ab*Fbg[Ri,Ro,Hb,Hc,Hd]IAg]

Fch [Ri_, Ro_, Hb_, Hc_, Hd_] := Fbg [Ri,Ro, Hc, Hb, Hd]
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Fhc[Ri_,Ro_,Hb ,Hc_,Hd_] :=

Fdg [Ri_, Ro_, Hb_ ,Hc_, Hd_] :=

Fgd [Ri_, Ro_, Hb_, Hc_, Hd_] :=

Fhd [Ri_, Ro_, Hb_, Hc_, Hd_] :=

Fdh [Ri_, Ro_, Hb_ ,Hc_, Hd_] :=

Fbe [Ri_ ,Ro_ ,Hb_ ,Hc_ ,Hd_] :=

Ae*Feb [Ri ,Ro ,Hb ,Hc,Hd] IAb]

Fbf [Ri_, Ro_, Hb_, Hc_ ,Hd_] :=

Fgb [Ri,Ro, Hc, Hb, Hd]

Fch [Ri,Ro,Hc, Hd,Hb]

Fhc [Ri,Ro, Hc, Hd,Hb]

Ffb [Ri,Ro, Hd, Hc, Hb]

Fbf [Ri,Ro, Hd, Hc,Hb]

Block [.{Ae=Pi*Ro"2-Pi*Ri" 2, Ab=2*Pi*Ri*Hb},

l-(Fba[Ri,Ro,Hb,Hc,Hd]

+Fbh[Ri,Ro,Hb,Hc,Hd]+Fbg[Ri,Ro,Hb,Hc,Hd]+Fbe[Ri,Ro,Hb,Hc,Hd])

Ffb[Ri_,Ro_,Hb_,Hc_,Hd_] := Block[{Af=2*Pi*Ro*Hd, Ab=2*Pi*Ri*Hb},

Ab*Fbf [Ri,Ro,Hb,Hc,Hd]/Af]

Fhx[Ri_,Ro_,Hb_,Hc_,Hd_] := Block[{Ah=2*Pi*Ro*Hb, Ax=Pi*Ro'2-Pi*R±'2},

Ax*Fxh[Ri,Ro,Hb,Hc,Hd]/Ah]

Fhg [Ri_, Ro_, Hb_, Hc_, Hd_] := I- (Fhx [Ri,Ro, Hb, Hc, Hd] +Fhc [Ri,Ro, Hb, Hc, Hd]

+Fhb [Ri, Ro, Hb, Hc, Hd] +Fha [Ri,Ro,Hb,Hc,Hd] +Fhh [Ri,Ro,Hb,Hc, Hd] )

Fgh [Ri_,Ro_,Hb_,Hc_,Hd_] := Block [{Ah=2*Pi*Ro*Hb, Ag=2*Pi*Ro*Hc},

Ah*Fhg [Ri,Ro,Hb,Hc,Hd] IAg]

Fhe[Ri_,Ro_,Hb_,Hc_,Hd_] := Block[{Ah=2*Pi*Ro*Hb, Ae=Pi*Ro'2-Pi*Ri'2},

Ae*Feh[Ri,Ro,Hb,Hc,Hd]/Ah]

Fhf [Ri_, Ro_, Hb_, Hc_, Hd_] := I- (Fha [Ri,Ro, Hb, Hc, Hd] +Fhb [Ri,Ro, Hb, Hc, Hd]

+Fhc [Ri,Ro, Hb, Hc, Hd] +Fhd [Ri,Ro, Hb, Hc,Hd] +Fhe [Ri,Ro, Hb,Hc, Hd]

+Fhh [Ri,Ro,Hb,Hc,Hd] +Fhg [Ri,Ro,Hb,Hc,Hd] )

Fac[Ri_,Ro_,Hb_

Fca[Ri_,Ro_,Hb_

Aa*Fac[Ri,Ro,Hb

,Hc_,Hd_] :=

,Hc_,Hd_] :=

,Hc,Hd]/Ac]

Fab[Ri,Ro,Hb+Hc,0,0]-Fab[Ri,Ro,Hb,Hc,0]

Block[{Aa=Pi*Ro'2-Pi*Ri'2, Ac=2*Pi*Ri*Hc},

Fad[Ri_,Ro_,Hb,Hc_,Hd_] := Fac[Ri,Ro,Hb+Hc,Hd,0]

Fda[Ri_,Ro_,Hb_,Hc_,Hd_] := Fca[Ri,Ro,Hb+Hc,Hd,0]

Fec[Ri_,Ro_,Hb_,Hc_,Hd_] := Fed[Ri,Ro,0,Hb,Hc+Hd]-Fed[Ri,Ro,Hb,Hc,Hd]

Fce[Ri_,Ro_,Hb_,Hc_,Hd_] := Block[{Ac=2*Pi*Ri*Hc, Ae=Pi*Ro'2-Pi*Ri'2},
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Ae*Fec [Ri,Ro,Hb, Hc, Hd]/Ac]

Fcf [Ri_ ,Ro_ ,Hb_ ,Hc_ ,Hd_]

Ff c[Ri_, Ro_, Hb_, Hc_, Hd_]

(*

Fdf [Ri_, Ro_, Hb_, Hc_, Hd_]

Ffd [Ri_ ,Ro_ ,Hb_ ,Hc_ ,Hd_]

*)

:= Fbg[Ri,Ro,Hc,Hd,Hb]

:= Fgb[Ri,Ro,Hc,Hd,Hb]

:= Fbh[Ri,Ro,Hd,Hc,Hb]

:= Fhb[Ri,Ro,Hd,Hc,Hb]

(* Finally, the different configurations for two concentric cylinders *)

<<complex.m

CCConfigl[Ri_,Ro_,Zl_,Ll_,Z2_,L2_] := Fdh[Ri,Ro,LI,Z2-(ZI+LI),L2]

CCConfig2[Ri_,Ro_,ZI_,LI_,Z2_,L2_] := Fch[Ri,Ro,LI,L2,0]

CCConfig3[Ri_,Ro_,ZI_,LI_,Z2_,L2_] := Block[{Hb=Z2-Zl, Hc=ZI+LI-Z2,

Hd=Z2+L2-(ZI+LI), Aa=Pi*Ro'2-Pi*R£'2, Af=2*Pi*Ro*(Z2+L2-(ZI+LI)),

Ae=Pi*Ro'2-Pi*Ri'2, Acd=2*Pi*Ri*L2}, I-(

(Aa/Acd) *(Fac [Ri,Ro, Hb, Hc ,Hd]+Fad [Ri ,Ro ,Hb,Hc, Hd] )+

(Af/Acd) * (Ffc [Ri,Ro, Hb,Hc,Hd] +Ffd [Ri,Ro,Hb, Hc, Hd] )+

(Ae/Acd) *(Fec [Ri,Ro, Hb, Hc, Hd] +Fed [Ri,Ro, Hb, Hc, Hd] ))]

(*

CCConfig3[Ri_,Ro_,Zl_,Ll_,ZR_,L2_] := Block[{Hb=Z2-Zl, Hc=ZI+LI-Z2,

Hd=Z2+L2-(ZI+LI), Aa=Pi*Ro'R-Pi*Ri'2, Af=2*Pi*Ro*(Z2+L2-(ZI+LI)),

Ae=Pi*Ro'2-Pi*Ri'2, Acd=2*Pi*Ri*L2}, { {Hb, Hc, Hd, Aa, Af, Ae, Acd},

(Aa/Acd), {Fac [Ri,Ro, Hb, Hc, Hd] , Fad [Ri,Ro, Hb, Hc, Hd] },

(Af/Acd), {Ffc [Ri,Ro, Hb, Hc, Hd], Ffd [Ri,Ro, Hb, Hc, Hd] }, {Ri, Ro, Hb, Hc, Hd},

(Ae/Acd), {Fec [Ri ,Ro ,Hb ,Hc ,Hd] , Fed [Ri ,Ro ,Hb ,Hc ,Hd]}}]

*)

CCConfig4[Ri_,Ro_,Zl_,Ll_,Z2_,L2_]

I- (Fcx [Ri ,Ro ,Hb,Hc, Hd] +Fca [Ri,Ro, Hb, Hc ,Hd] )]

CCConf ig5 [Ri_,Ro_, ZI_, LI_,Z2_, L2_] := Block [{Hb=Z2-Z i, Hc=L2,

Fch [Ri,Ro,Hb,Hc, Hd] +Fcg [Ri,Ro,Hb, Hc, Hd] +Fcf [Ri,Ro, Hb, Hc,Hd] ]

CCConfig6[Ri_,Ro_,ZI_,LI_,Z2_,L2_] := Block[{Hb=Zi-Z2, Hc=LI,

Ag=2*Pi*Ro*Hc, Abcd=2*Pi*Ri*L2},

Ag*(Fgb[Ri,Ro,Hb,Hc,Hd]+Fgc[Ri,Ro,Hb,Hc,Hd]+Fgd[Ri,Ro,Hb,Hc,Hd])/Abcd]

CCConfig7[Ri_,Ro_,ZI_,LI_,Z2_,L2_] := Block[{Hb=Zi-Z2, Hc=LI, Hd=0,

Ag=2*Pi*Ro*Hc, Abc=2*Pi*Ri*L2},

Ag*(Fgb[Ri,Ro,Hb,Hc,Hd]+Fgc[Ri,Ro,Hb,Hc,Hd])IAbc]

CCConfig8[Ri_,Ro_,ZI_,LI_,Z2_,L2_] := Block[{Hb=Zi-Z2, Hc=Z2+L2-ZI,

Hd=ZI+LI-(Z2+L2), Aa=Pi*Ro'2-Pi*Ri'2, Ah=2*Pi*Ro*Hb,

Ae=Pi*Ro'2-Pi*Ri'2, Abc=2*Pi*Ri*L2}, I-(

:= Block[{Hb=Z2-Zl, Hc=L2, Hd=O},

Hd=ZI+LI- (Z2+L2) },

Hd=Z2+L2- (ZI+LI),
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(Aa/Abc) *(Fab [Ri, Ro, Hb, Hc, Hd] +Fac [Ri,Ro, Hb, Hc, Hd] )+

(Ah/Abc) *(Fhb [Ri,Ro, Hb, Hc, Hd] +Fhc [Ri,Ro, Hb, Hc, Hd] )+

•(Ae/Abc) * (Feb [Ri,Ro, Hb, Hc,Hd] +Fec [Ri,Ro,Hb,Hc,Hd] ))]

CCConf ig9 [Ri_, Ro_, ZI_,LI_, Z2_, L2_] := Fbg [Ri,Ro, L2, LI,0]

CCConfiglO[Ri_,Ro_,Zl_,Ll_,Z2_,L2_]

ccconfig11[Ri_,Ro_,Z1_,Ll_,Z2_,L2_]

Fbh[Ri,Ro,Hb,Hc,Hd]+Fbg[Ri,Ro,Hb,Hc,

CCConfig12[Ri_,Ro_,Z1_,L1_,Z2_,L2_]

CCConfig13[Ri_,Ro_,Z1_,L1_,ZR_,L2_]

Ah=2*Pi*Ro*Hb, Abc=2*Pi*Ri*L2},

:= Fbf [Ri ,Ro ,L2,Zl- (Z2+L2) ,LI]

:= Block[{Hb=L2, Hc=LI-L2, Hd=0},

Hd]]

:= Fbh[Ri,Ro,Li,0,0]

:= Block[{Hb=Ll, Hc=L2-LI, Hd=0,

Ah* (Fhb [Ri,Ro, Hb, Hc, Hd] +Fhc [Ri,Ro, Hb, Hc, Hd])/Abc]

CCConfigl4[Ri_ ,Ro_ ,ZI_ ,LI_ ,Z2_ ,L2_] := Fhf [Ri ,Ro,LI ,Z2- (ZI+L1) ,L2]

CCConf igl5 [Ri_, Ro_, ZI_, LI_, Z2_, L2_] := Fhg [Ri,Ro, L1, L2, O]

CCConfiglB[Ri_,Ro_,ZI_,LI_,Z2_,L2_] := Fhh[Ri,Ro,Ll,O,O]

CDConf ig 1 [Rc_, Ri _,Ro_,

CDConf ig2 [Rc_ ,Ri_ ,Ro_,

CDConf ig3 [Rc_, Ri_, Ro_,

CDConfig4 [Rc_, Ri_,Ro_,

CDConfig5 [Rc_, Ri_,Ro_,

CDConfig6 [Rc_ ,Ri_ ,Ro_,

CDConf ig7 [Rc_, Ri_,Ro_,

CDConf ig8 [Rc_, Ri_, Ro_,

Zd_,Zc_

Zd_,Zc_

Zd_,Zc_

Zd_,Zc_

Zd_,Zc_

Zd_,Zc_

Zd_,Zc_

Zd_,Zc_

,L_] := Fca[Rc,Ro,Zc-Zd,L,O]

,L_] := Fca [Rc,Ro, Zc-Zd, L, O]-Fca [Rc ,Ri,Zc-Zd, L, O]

,L_] := Fba[Rc,Ro,L,O,O]

,L_] := Fba[Rc,Ro,L,O,O]-Fba[Rc,Ri,L,O,O]

,L_] := Fce[Rc,Ro,O,L,Zd-(Zc+L)]

L_] :=Fce [Rc,Ro, O,L, Zd- (Zc+L) ]-Fce [Rc,Ri, O,L,Zd- (Zc+L) ]

.L_] := Fde[Rc,Ro,O,O,L]

.L_] := Fde[Rc,Ro,O,O,L]-Fde[Rc,Ri,O,O,L]

CDConfig9 [Rc_,Ri_,Ro_,Zd_,Zc_,L_] := Fga[Ri,Rc,Zc-Zd,L,O]

(* CDConfiglO[Rc_,Ri_,Ro_,Zd_,Zc_,L_] :=

Fga[Ri,Rc,Zc-Zd,L,O]-Fga[Ro,Rc,Zc-Zd,L,O] *)

CDConfiglO [Rc_ ,Ri_ ,Ro_, Zd_,Zc_ ,L_] :=

Block [{Ao=2. O*Rc*L*Pi, At=Pi*Ro" 2-Pi*Ri'2},

At * (Fto [Rc,Ri, Ro, Rc, (Zc-Zd) +L] -Fto [Rc,Ri, Ro, Rc, Zc-Zd] )/Ao]

CDConfigll[Rc_,Ri_,Ro_,Zd_,Zc_,L_] :=

(* CDConfigl2[Rc_,Ri_,Ro_,Zd_,Zc_,L_]

CDConfigl2[Rc_,Ri_,Ro_,Zd_,Zc_,L_] :=

CDConfigl3[Rc_,Ri_,Ro_,Zd_,Zc_,L_] :=

(* CDConfigl4[Rc_,Ri_,Ro_,Zd_,Zc_,L_]

Fha[Ri,Rc,L,0,0]

:= Fha[Ri,Rc,L,0,0]-Fha[Ro,Rc,L,0,0]

Fot[Rc,Ri,Ro,Rc,L]

Fge[Ri,Rc,0,L,Zd-(Zc+L)]

:=

Fge [Ri,Rc, O, L,Zd- (Zc+L) ]-Fge [Ro,Rc, O,L,Zd- (Zc+L) ] *)

CDConfigl4 [Rc_ ,Ri_,Ro_, Zd_, Zc_, L_] :=

Block [{Ao=2. O*Rc*L*Pi, Ab=Pi*Ro" 2-Pi*Ri" 2},

Ab* (Fbo [Rc,Ri,Rc,Ro, Zd-Zc] -Fbo [Rc,Ri,Rc ,Ro,Zd- (Zc+L) ])/Ao]

CDConfig15[Rc_,Ri_,Ro_,Zd_,Zc_,L_] := Ffe[Ri,Rc,O,O,L]

(* CDConfigl6[Rc_,Ri_,Ro_,Zd_,Zc_,L_] := Ffe[Ri,Rc,O,O,L]-Ffe[Ro,Rc,O,O,L]

CDConf igl6 [Rc_ ,Ri_ ,Ro_ ,Zd_ ,Zc_ ,L_] := Fob [Rc ,Ri ,Rc,Ro ,L]

,)

,)

(* Assuming Roa < Rob *)
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(* DDConfig[Ria_,Roa_,Rib_,Rob ,H_] :=

Ftb [0 ,Ria,Roa,Rob ,H]-Ftb [0,Ria,Roa,Rib, HI *)

DDConfig[Ria_,Roa_,Rib_,Rob_,H_] :--

Block [{Af=2. O*Pi*Rob*H, Ad=Pi*Rib _2,Aa--Pi*Roa ^2-Pi*Ria" 2,

Ff ac--Fto [ROB, O,Rea, Rob, H], Ffc=Ft o [Rob, O,Ria, Rob, HI,

Fdac=Fbo [Rob, O,Rob, Rob, HI, Fdc=Fbo [Rob, O,Rob, Rib, H] },

I.O- (Af* (Ff ac-Ffc) -Ad* (Fdac-Fdc))/Aa]

DD [rl_,r2_,h_] :=

Block[{Rl = rllh, R2 = r2/h, X =

(1/2)* (X-Sqrt [X_2-4. (R2/RI) "2] )]

1+(1+R2"2)/R1"2},

DDConfigl[ll_,12_,iS_,14_,h_] :=

Block[{rl = II, r2 = 12, r3 = iS, r4 = 14,

R43LI234 = DD[rS+r4,11+12+iS+14,h], R4SL234 = DD[rS+r4,12+iS+14,h],

R4LI234 = DD[r4,11+12+iS+14,h], R4L234 = DD[r4,12+iS+14,h],

R43L1 = R4SL1234-R43L234, R4L1 = R4L1234-R4L234,

AR34 = Pi*(rS+r4)'2, AR4 = Pi*r4"2,

ALl = Pi*(ll+12+IS+14)^2-Pi*(12+I3+14)^2},

(ARS4*R43LI)/ALI-(AR4*R4LI)/ALI]

DDConfig2[ll_,12_,iS_,14_,h_] :=

Block[{rl = 11, r2 = 12, r3 = 13, r4 = 14,

RS4L234 = DD[rS+r4,12+IS+I4,h], RS4L34 = DD[rS+r4,1S+14,h],

R4L234 = DD[r4,12+IS+14,h], R4L34 = DD[r4,13+14,h],

RS4L2 = RS4L234-RS4L34, R4L2 = R4L234-R4LS4,

AR34 = Pi*(rS+r4)'2, AR4 = Pi*r4"2,

AL2 = Pi*(12+I3+I4)'2-Pi*(13+I4)'2},

(ARS4*R34L2)/AL2-(AR4*R4L2)/AL2]

DDConfigS[ll_,12_,13_,14_,h_] :=

Block[{rl = ii, r2 = 12, rS = 13, r4 = 14,

R432LI234 = DD[r2+rS+r4,11+12+iS+14,h],

R432L34 = DD[r2+rS+r4,1S+14,h],

R4LI234 = DD[r4,11+12+IS+14,h], R4L34 = DD[r4,1S+14,h],

R432LI2 = R4S2LI234-R432LS4, R4L12 = R4LI234-R4L34,

AR432 = Pi*(r4+rS+r2)'2, AR4 = Pi*r4"2,

ALl2 = Pi*(ll+12+13+14)'2-Pi*(13+14)'2},

(AR432*R432LI2)/ALI2-(AR4*B4LI2)/ALI2]

DDConfig4[11_,12_,13_,14_,h_] :=

Block[{rl = ii, r2 = 12, r3 = 13, r4 = 14,

R234LI234 = DD[r2+rS+r4,11+12+13+14,h],

R234L4 = DD[r2+rS+r4,14,h],

RS4LI234 = DD[rS+r4,11+12+13+14,h], R34L4 = DD[rS+r4,14,h],

R234L123 = R234L1234-R234L4, RS4L123 = RS4L1234-RS4L4,

AR234 = Pi*(r2+r3+r4)'2, AR34 = Pi*(rS+r4)'2,
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ALl23 = Pi*(11+12+13+14)^2-Pi*14"2},

(AK234*K234LI23)/ALI23-(AP_4*R34LI23)/ALI23]
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Appendix C

Material Properties

The material properties in this chapter were taken from Kingery et al. [60], Callister [61]

and Pehlke et al. [62].

Temperature K Conductivity wmK

400 29.7

500 23.1

600 19.3

700 16.2

800 13.9

900 12.4

1000 11.0

1100 9.9

1200 9.1

1300 8.3

1400 7.7

1500 7.1

1511 18.0

1512 18.0

Table C.I: Gallium Arsenide Thermal Conductivity
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Property Value
Latent Heat of Fusion 175 J-

9
Density 5.71

Etl_ 3

Table C.2: Miscellaneous Properties for Gallium Arsenide

Temperature K Conductivity w

400 129.5

500 113.0

600 98.8

700 88.1

800 79.7

900 72.5

1100 66.8

1200 57.9

1400 52.0

1600 47.6

Table C.3: Graphite Thermal Conductivity

Temperature K Conductivity _w

400 138

500 130

600 128

700 123

800 120

900 112

1000 108

1100 106

1200 104

1300 100

1400 96

1400 94

1600 90

Table C.4: Molybdenum Thermal Conductivity
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TemperatureK Conductivity wmA"

523 .24

873 .27

1273 .34

1673 .38

Table C.5: Zirconia FBD Thermal Conductivity

Temperature K Conductivity w

673 .09

1073 .11

1373 .14

1673 .19

1923 .25

Table C.6: Zirconia ZYC Thermal Conductivity

Temperature K Conductivity w

100 .69

200 1.14

200 1.38

400

500

600

700

800

900

1000

1100

1.51

1.62

1.75

1.92

2.17

2.48

2.87

3.36

1200 4.00

1300 4.82

1400 6.2

Table C.7: Quartz Thermal Conductivity
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TemperatureK Conductivity wmK

294 218.8

400 168.3

600 105.2

800 63.12

1074 29.45

1200 21.03

Table C.8: Beryllia Thermal Conductivity

Temperature K Conductivity wrnK

589 .3

700 .33

811 .38

923 .43

1200 .62

Table C.9: MIN-K TE-1800 Thermal Conductivity

Temperature K Conductivity w

317 35.9

417 26.4

617 15.8

817 10.4

1017 7.8

1216 6.5

1516 5.6

Table C.10: Alumina Thermal Conductivity

Temperature K IIConductivity _ [ 2_ Conductivity wmK

298 104.6 1.7

773 77.1 2.1

1273 62.8 2.5

Table C.11: Pyrolytic Boron Nitride Thermal Conductivity
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Property Value
Thermal Conductivity

2_Thermal Conductivity
1.7 w

mK

1.0 w

Table C.12: Boron Nitride, High Boron Content (HBC) Thermal Conductivity

. Property Value

Ambient Temperature (T¢¢)

Convection Coefficient hair

Convection Coefficient h,,,at,,.

Stefan-Boltzman Constant

300 K

.37 w

5.0
5.67 * 10-s

Table C.13: Miscellaneous Properties and Coefficients
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